(本題滿分12分)平面直角坐標(biāo)系中,為坐標(biāo)原點(diǎn),給定兩點(diǎn),點(diǎn)滿足   ,其中,且.  (1)求點(diǎn)的軌跡方程;(2)設(shè)點(diǎn)的軌跡與雙曲線交于兩點(diǎn),且以為直徑的圓過原點(diǎn),求證:為定值;(3)在(2)的條件下,若雙曲線的離心率不大于,求雙曲線實(shí)軸長的取值范圍.
(Ⅰ)   (Ⅱ)  2 (Ⅲ)(0,1

解.(1)設(shè),因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823120407831613.gif" style="vertical-align:middle;" />,則
所以即點(diǎn)的軌跡方程為 ---    3分
(2)  明:由
設(shè),則
因?yàn)橐?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823120408049368.gif" style="vertical-align:middle;" />為直徑的圓過原點(diǎn),所以
化簡得----8分
(3)  因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823120408548482.gif" style="vertical-align:middle;" />,所以  因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823120408595906.gif" style="vertical-align:middle;" />
所以雙曲線實(shí)軸長的取值范圍是(0,1——12分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題


查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若拋物線的焦點(diǎn)與橢圓的右焦點(diǎn)重合,則的值為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線,直線兩點(diǎn),是線段的中點(diǎn),過軸的垂線交于點(diǎn).(1)證明:拋物線在點(diǎn)處的切線與平行;(2)是否存在實(shí)數(shù)使NANB,若存在,求的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知雙曲線中心在原點(diǎn),一個(gè)頂點(diǎn)的坐標(biāo)為,且焦距與虛軸長之比為,則雙曲線的標(biāo)準(zhǔn)方程是____________________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知圓Ox2+y2=2交x軸于A,B兩點(diǎn),點(diǎn)P(-1,1)為圓O上一點(diǎn).曲線C是以AB為長軸,離心率為的橢圓,點(diǎn)F為其右焦點(diǎn).

過原點(diǎn)O作直線PF的垂線交橢圓C的右準(zhǔn)線l于點(diǎn)Q
(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)證明:直線PQ與圓O相切.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知,點(diǎn)滿足,記點(diǎn)的軌跡為.
(Ⅰ)求軌跡的方程;(Ⅱ)若直線過點(diǎn)且與軌跡交于、兩點(diǎn). (i)設(shè)點(diǎn),問:是否存在實(shí)數(shù),使得直線繞點(diǎn)無論怎樣轉(zhuǎn)動(dòng),都有成立?若存在,求出實(shí)數(shù)的值;若不存在,請說明理由.(ii)過作直線的垂線、,垂足分別為、,記
,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知點(diǎn)(1,1)是橢圓
x2
4
+
y2
2
=1
某條弦的中點(diǎn),則此弦所在的直線方程為:______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題


查看答案和解析>>

同步練習(xí)冊答案