【題目】已知定義域?yàn)?/span>的函數(shù)是奇函數(shù).

1)求,判斷函數(shù)的單調(diào)性并證明.

2)對(duì)任意的,不等式恒成立,求的取值范圍.

【答案】1, 函數(shù)為單調(diào)遞減函數(shù),證明見(jiàn)詳解;

2

【解析】

1)由函數(shù)是奇函數(shù),可得,代入可得的值,判斷函數(shù)為單調(diào)遞減函數(shù),用定義法可得證明;

2)由函數(shù)的單調(diào)性與奇偶性,對(duì)任意的不等式恒成立可化為恒成立,分離參數(shù)可得,設(shè)求出的最小值,可得的取值范圍.

解:由函數(shù)是奇函數(shù),且函數(shù)的定義域?yàn)?/span>,,

,故

判斷函數(shù)為單調(diào)遞減函數(shù),證明如下:

設(shè)

易得:,,故,

故數(shù)為單調(diào)遞減函數(shù);

2)由題意,對(duì)于任意的不等式恒成立,

可得恒成立,由(1)可得單調(diào)遞減,

故可得:對(duì)于任意的,恒成立,

故可得:,可得,

設(shè),易得為單調(diào)遞減的函數(shù),

可得

故可得,

的取值范圍為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在邊長(zhǎng)為2的正方體ABCD-A1B1C1D1中,EBC的中點(diǎn),FDD1的中點(diǎn),

1)求證:CF∥平面A1DE;

2)求平面A1DE與平面A1DA夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列事件是隨機(jī)事件的是( 。

當(dāng)x>10時(shí),當(dāng)xR,x2+x0有解

當(dāng)aR關(guān)于x的方程x2+a0在實(shí)數(shù)集內(nèi)有解;當(dāng)sinα>sinβ時(shí),α>β

A.①②B.②③C.③④D.①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,某區(qū)有一塊空地,其中,,.當(dāng)?shù)貐^(qū)政府規(guī)劃將這塊空地改造成一個(gè)旅游景點(diǎn),擬在中間挖一個(gè)人工湖,其中都在邊上,且,挖出的泥土堆放在地帶上形成假山,剩下的地帶開(kāi)設(shè)兒童游樂(lè)場(chǎng).為安全起見(jiàn),需在的周?chē)惭b防護(hù)網(wǎng).

1)當(dāng)時(shí),求防護(hù)網(wǎng)的總長(zhǎng)度;

2)若要求挖人工湖用地的面積是堆假山用地的面積的倍,試確定的大;

3)為節(jié)省投入資金,人工湖的面積要盡可能小,問(wèn)如何設(shè)計(jì)施工方案,可使的面積最小?最小面積是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知平面上一個(gè)圓可以將平面分成兩個(gè)部分,兩個(gè)圓最多可以將平面分成4個(gè)部分,設(shè)平面上個(gè)圓最多可以將平面分成個(gè)部分.

,的值;

猜想的表達(dá)式并證明;

證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本小題共13分)

已知1, ,對(duì)于, 表示UV中相對(duì)應(yīng)的元素不同的個(gè)數(shù).

)令,存在m個(gè),使得,寫(xiě)出m的值;

)令,若,求證: ;

)令,若,求所有之和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線, (為參數(shù), 為傾斜角).以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,曲線的直角坐標(biāo)方程為.

(Ⅰ)將曲線的直角坐標(biāo)方程化為極坐標(biāo)方程;

(Ⅱ)設(shè)點(diǎn)的直角坐標(biāo)為,直線與曲線的交點(diǎn)為、,求的取值范圍.

【答案】I;(II.

【解析】試題分析:(Ⅰ)將由代入,化簡(jiǎn)即可得到曲線的極坐標(biāo)方程;(Ⅱ)將的參數(shù)方程代入,得,根據(jù)直線參數(shù)方程的幾何意義,利用韋達(dá)定理結(jié)合輔助角公式,由三角函數(shù)的有界性可得結(jié)果.

試題解析:(Ⅰ)由,得,即

所以曲線的極坐標(biāo)方程為

II)將的參數(shù)方程代入,得

, 所以,又,

所以,且,

所以,

,得,所以.

的取值范圍是.

型】解答
結(jié)束】
23

【題目】已知、均為正實(shí)數(shù).

(Ⅰ)若,求證:

(Ⅱ)若,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校高三年級(jí)學(xué)生某次身體素質(zhì)體能測(cè)試的原始成績(jī)采用百分制,已知所有這些學(xué)生的原始成績(jī)均分布在內(nèi),發(fā)布成績(jī)使用等級(jí)制,各等級(jí)劃分標(biāo)準(zhǔn)見(jiàn)下表.

百分制

85分及以上

70分到84分

60分到69分

60分以下

等級(jí)

A

B

C

D

規(guī)定:A,B,C三級(jí)為合格等級(jí),D為不合格等級(jí)為了解該校高三年級(jí)學(xué)生身體素質(zhì)情況,從中抽取了n名學(xué)生的原始成績(jī)作為樣本進(jìn)行統(tǒng)計(jì).

按照,,,的分組作出頻率分布直方圖如圖1所示,樣本中分?jǐn)?shù)在80分及以上的所有數(shù)據(jù)的莖葉圖如圖2所示

n和頻率分布直方圖中的x,y的值,并估計(jì)該校高一年級(jí)學(xué)生成績(jī)是合格等級(jí)的概率;

根據(jù)頻率分布直方圖,求成績(jī)的中位數(shù)精確到;

在選取的樣本中,從A,D兩個(gè)等級(jí)的學(xué)生中隨機(jī)抽取2名學(xué)生進(jìn)行調(diào)研,求至少有一名學(xué)生是A等級(jí)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】省環(huán)保廳對(duì)、三個(gè)城市同時(shí)進(jìn)行了多天的空氣質(zhì)量監(jiān)測(cè),測(cè)得三個(gè)城市空氣質(zhì)量為優(yōu)或良的數(shù)據(jù)共有180個(gè),三城市各自空氣質(zhì)量為優(yōu)或良的數(shù)據(jù)個(gè)數(shù)如下表所示:

優(yōu)(個(gè))

28

良(個(gè))

32

30

已知在這180個(gè)數(shù)據(jù)中隨機(jī)抽取一個(gè),恰好抽到記錄城市空氣質(zhì)量為優(yōu)的數(shù)據(jù)的概率為0.2.

(1)現(xiàn)按城市用分層抽樣的方法,從上述180個(gè)數(shù)據(jù)中抽取30個(gè)進(jìn)行后續(xù)分析,求在城中應(yīng)抽取的數(shù)據(jù)的個(gè)數(shù);

(2)已知 ,求在城中空氣質(zhì)量為優(yōu)的天數(shù)大于空氣質(zhì)量為良的天數(shù)的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案