【題目】如圖,圓臺的軸截面為等腰梯形,圓臺的側(cè)面積為.若點(diǎn)分別為圓上的動點(diǎn),且點(diǎn)在平面的同側(cè).
(1)求證:;
(2)若,則當(dāng)三棱錐的體積取最大值時,求多面體的體積.
【答案】(1)詳見解析;(2).
【解析】
(1)要證明,只需證明即可;
(2),利用基本不等式知當(dāng)時有最大值,再將多面體的體積分割成與之和即可.
(1)證明:設(shè)圓的半徑分別為
因為圓臺的側(cè)面積為,
所以,可得
因此,在等腰梯形中,.
如圖,連接線段,
在圓臺中,平面平面,
所以.又,所以在中,.
在中,,故,即.
(2)解:由題意可知,三棱錐的體積為.
又在直角三角形中,
所以當(dāng)且僅當(dāng),
即點(diǎn)為弧的中點(diǎn)時,有最大值
過點(diǎn)作交于點(diǎn),
因為平面,平面,
所以,平面
平面,,
所以平面.
又,則點(diǎn)到平面的距離
所以四棱錐的體積
綜上,當(dāng)三棱錐體積取最大值時,
多面體的體積
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地為改善旅游環(huán)境進(jìn)行景點(diǎn)改造.如圖,將兩條平行觀光道l1和l2通過一段拋物線形狀的棧道AB連通(道路不計寬度),l1和l2所在直線的距離為0.5(百米),對岸堤岸線l3平行于觀光道且與l2相距1.5(百米)(其中A為拋物線的頂點(diǎn),拋物線的對稱軸垂直于l3,且交l3于M),在堤岸線l3上的E,F兩處建造建筑物,其中E,F到M的距離為1(百米),且F恰在B的正對岸(即BF⊥l3).
(1)在圖②中建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,并求棧道AB的方程;
(2)游客(視為點(diǎn)P)在棧道AB的何處時,觀測EF的視角(∠EPF)最大?請在(1)的坐標(biāo)系中,寫出觀測點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)試求函數(shù)零點(diǎn)的個數(shù),并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年國慶節(jié)假期期間,某商場為掌握假期期間顧客購買商品人次,統(tǒng)計了10月1日7:00﹣23:00這一時間段內(nèi)顧客購買商品人次,統(tǒng)計發(fā)現(xiàn)這一時間段內(nèi)顧客購買商品共5000人次顧客購買商品時刻的的頻率分布直方圖如下圖所示,其中時間段7:0011:00,11:0015:00,15:00~19:00,19:00~23:00,依次記作[7,11),[11,15),[15,19),[19,23].
(1)求該天顧客購買商品時刻的中位數(shù)t與平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代表);
(2)由頻率分布直方圖可以近似認(rèn)為國慶節(jié)假期期間該商場顧客購買商品時刻服從正態(tài)分布N(μ,δ2),其中μ近似為,δ=3.6,估計2019年國慶節(jié)假期期間(10月1日﹣10月7日)該商場顧客在12:12﹣19:24之間購買商品的總?cè)舜危ńY(jié)果保留整數(shù));
(3)為活躍節(jié)日氣氛,該商場根據(jù)題中的4個時間段分組,采用分層抽樣的方法從這5000個樣本中隨機(jī)抽取10個樣本(假設(shè)這10個樣本為10個不同顧客)作為幸運(yùn)客戶,再從這10個幸運(yùn)客戶中隨機(jī)抽取4人每人獎勵500元購物券,其他幸運(yùn)客戶每人獎勵200元購物券,記獲得500元購物券的4人中在15:00﹣19:00之間購買商品的人數(shù)為X,求X的分布列與數(shù)學(xué)期望;
參考數(shù)據(jù):若T~N(μ,σ2),則①P(μ﹣σ<T≤μ+σ)=0.6827;②P(μ﹣2σ<T≤μ+2σ)=0.9545;③P(μ﹣3σ<T≤μ+3σ)=0.9973.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】曲線的參數(shù)方程為(為參數(shù)),以原點(diǎn)為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,曲線的極坐標(biāo)方程為.
(1)求曲線的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;
(2)若直線與曲線,的交點(diǎn)分別為、(、異于原點(diǎn)),當(dāng)斜率時,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】改革開放以來,中國快遞行業(yè)持續(xù)快速發(fā)展,快遞業(yè)務(wù)量從上世紀(jì)年代的萬件提升到2018年的億件,快遞行業(yè)的發(fā)展也給我們的生活帶來了很大便利.已知某市某快遞點(diǎn)的收費(fèi)標(biāo)準(zhǔn)為:首重(重量小于等于)收費(fèi)元,續(xù)重元(不足按算). (如:一個包裹重量為則需支付首付元,續(xù)重元,一共元快遞費(fèi)用)
(1)若你有三件禮物重量分別為,要將三個禮物分成兩個包裹寄出(如:合為一個包裹,一個包裹),那么如何分配禮物,使得你花費(fèi)的快遞費(fèi)最少?
(2)對該快遞點(diǎn)近天的每日攬包裹數(shù)(單位:件)進(jìn)行統(tǒng)計,得到的日攬包裹數(shù)分別為件,件,件,件,件,那么從這天中隨機(jī)抽出天,求這天的日攬包裹數(shù)均超過件的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某房地產(chǎn)開發(fā)商在其開發(fā)的某小區(qū)前修建了一個弓形景觀湖.如圖,該弓形所在的圓是以為直徑的圓,且米,景觀湖邊界與平行且它們間的距離為米.開發(fā)商計劃從點(diǎn)出發(fā)建一座景觀橋(假定建成的景觀橋的橋面與地面和水面均平行),橋面在湖面上的部分記作.設(shè).
(1)用表示線段并確定的范圍;
(2)為了使小區(qū)居民可以充分地欣賞湖景,所以要將的長度設(shè)計到最長,求的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com