9.在極坐標系中,圓ρ=4cosθ(ρ∈R)的圓心到直線$θ=\frac{π}{3}$的距離是( 。
A.$\sqrt{3}$B.$2\sqrt{3}$C.1D.2

分析 先將極坐標方程化為普通方程,可求出圓心的坐標,再利用點到直線的距離公式即可求出答案.

解答 解:∵圓ρ=4cosθ,∴ρ2=4ρcosθ.,化為普通方程為x2+y2=4x,即(x-2)2+y2=4,∴圓心的坐標為(2,0).
∵直線$θ=\frac{π}{3}$(ρ∈R),∴直線的方程為y=$\sqrt{3}$x,即$\sqrt{3}$x-y=0.
∴圓心(2,0)到直線$\sqrt{3}$x-y=0的距離$\frac{2\sqrt{3}}{\sqrt{3+1}}$=$\sqrt{3}$.
故選A.

點評 正確化極坐標方程為普通方程及會利用點到直線的距離公式是解題的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

19.若關于x的一元二次方程x2+ax-2=0有兩個不相等的實根x1,x2,且x1<-1,x2>1,則實數(shù)a的取值范圍是( 。
A.a<-1B.a>1C.-1<a<1D.a>2$\sqrt{2}$或a<-2$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知△ABC的內角A,B,C的對邊分別為a,b,c,且滿足cos2B-cos2C-sin2A=sinAsinB.
(1)求角C;
(2)向量$\overrightarrow{m}$=(sinA,cosB),$\overrightarrow{n}$=(cosx,sinx),若函數(shù)f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$的圖象關于直線x=$\frac{π}{3}$對稱,求角A,B.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.如圖,在平面直角坐標系xOy中,角α(0≤α≤π)的始邊為x軸的非負半軸,終邊與單位圓的交點為A,將OA繞坐標原點逆時針旋轉$\frac{π}{2}$至OB,過點B作x軸的垂線,垂足為Q.記線段BQ的長為y,則函數(shù)y=f(α)的圖象大致是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知函數(shù)$f(x)=\sqrt{3}sin2x-2{cos^2}x$.
(1)求$f(\frac{π}{6})$的值;
(2)求f(x)的單調遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.cos585°的值為( 。
A.$\frac{{\sqrt{3}}}{2}$B.$-\frac{{\sqrt{3}}}{2}$C.$\frac{{\sqrt{2}}}{2}$D.$-\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知sinθ-2|cosθ|=0,且θ為第二象限的角.
(1)求tanθ的值;
(2)求sin2θ-sinθ•cosθ-2cos2θ+1的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.下列函數(shù)中為奇函數(shù)的是( 。
A.y=sin2xB.y=xcosxC.y=$\sqrt{x}$D.y=|x|

查看答案和解析>>

科目:高中數(shù)學 來源:2015-2016學年河南省商丘市高一文下學期期末考數(shù)學試卷(解析版) 題型:解答題

已知△ABC的角A、B、C所對的邊分別是a、b、c,設向量=(a,b),=(sin B,sin A),=(b-2,a-2).

(Ⅰ)若,判斷△ABC的形狀;

(Ⅱ)若,邊長c=2,角C=,求△ABC的面積.

查看答案和解析>>

同步練習冊答案