如圖,已知點A(1,
2
)是離心率為
2
2
的橢圓C:
y2
a2
+
x2
b2
=1(a>b>0)上的一點,斜率為
2
的直線BD交橢圓C于B,D兩點,且A、B、D三點互不重合.
(1)求橢圓C的方程;
(2)求證:直線AB,AD的斜率之和為定值.
考點:直線與圓錐曲線的綜合問題
專題:綜合題,圓錐曲線的定義、性質(zhì)與方程
分析:(Ⅰ)根據(jù)點A(1,
2
)是離心率為
2
2
的橢圓C上的一點,建立方程,即可求橢圓C的方程;
(Ⅱ)設(shè)直線BD的方程為y=
2
x+m,代入橢圓方程,設(shè)D(x1,y1),B(x2,y2),直線AB、AD的斜率分別為:kAB、kAD,則kAD+kAB=
y1-
2
x1-1
+
y2-
2
x2-1
,由此能導(dǎo)出即kAD+kAB=0.
解答: 解:(1)由題意,可得e=
c
a
=
2
2
,
代入A(1,
2
)得
2
a2
+
1
b2
=1

又a2=b2+c2,…(2分)
解得a=2,b=c=
2
,
所以橢圓C的方程
y2
4
+
x2
2
=1
.…(5分)
(2)證明:設(shè)直線BD的方程為y=
2
x+m,
又A、B、D三點不重合,∴m≠0,
設(shè)D(x1,y1),B(x2,y2),
則由
y=
2
x+m
2x2+y2=4
得4x2+2
2
mx+m2-4=0
所以△=-8m2+64>0,
所以-2
2
<m<2
2

x1+x2=-
2
2
m,x1x2=-
m2-4
4
…(8分)
設(shè)直線AB、AD的斜率分別為:kAB、kAD,
則kAD+kAB=
y1-
2
x1-1
+
y2-
2
x2-1
=2
2
+m•
x1+x2-2
x1x2-x1-x2+1

=2
2
+m•
-
2
2
m-2
m2-4
4
+
2
2
m+1
=2
2
-2
2
=0 (*)     
所以kAD+kAB=0,即直線AB,AD的斜率之和為定值.…(12分)
點評:本題主要考查直線與圓錐曲線的綜合應(yīng)用能力,具體涉及到軌跡方程的求法及直線與橢圓的相關(guān)知識,解題時要注意合理地進行等價轉(zhuǎn)化.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若向量
a
b
滿足|
a
+2
b
|=1,則
a
b
的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若P為△ABC內(nèi)一點,且
PB
+
PC
+2
PA
=
0
,在△ABC內(nèi)隨機撒一顆豆子,則此豆子落在△PBC內(nèi)的概率為(  )
A、
1
2
B、
1
3
C、
1
4
D、
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

坐標原點到函數(shù)f(x)=ex+1的圖象在點(1,f(1))處切線y=g(x)的距離為(  )
A、
1
e
B、
1
e2+1
C、
e
e2+1
D、
e2+1
e2+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)z=1-i(i是虛數(shù)單位),則復(fù)數(shù)
2
z
的虛部是(  )
A、1B、-1C、iD、-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,橢圓
x2
a2
+
y2
b2
=1(a>b>0)的長軸長為4,點A,B,C為橢圓上的三個點,A為橢圓的右端點,BC過中心O,且|BC|=2|AB|,S△ABC=3.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)設(shè)P,Q是橢圓上位于直線AC同側(cè)的兩個動點(異于A,C),且滿足∠PBC=∠QBA,試討論直線BP與直線BQ斜率之間的關(guān)系,并求證直線PQ的斜率為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

甲、乙兩容器中分別盛有兩種濃度的某種溶液300mL,從甲容器中取出100mL溶液,將其倒入乙容器中攪勻,再從乙容器中取出100mL溶液,將其倒入甲容器中攪勻,這稱為是一次調(diào)和,已知第一次調(diào)和后,甲、乙兩種溶液的濃度分別記為:a1=20%,b1=2%,第n次調(diào)和后的甲、乙兩種溶液的濃度分別記為:an,bn
(Ⅰ)請用an,bn分別表示an+1和bn+1
(Ⅱ)問經(jīng)過多少次調(diào)和后,甲乙兩容器中溶液的濃度之差小于0.1%.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,設(shè)P是圓O:x2+y2=2上的點,過P作直線l垂直x軸于點Q,M為l上一點,且
PQ
=
2
MQ
,當點P在圓上運動時,記點M的軌跡為曲線Γ.
(Ⅰ)求曲線Γ的方程;
(Ⅱ)某同學(xué)研究發(fā)現(xiàn):若把三角板的直角頂點放置在圓O的圓周上,使其一條直角邊過點F(1,0),則三角板的另一條直角邊所在直線與曲線Γ有且只有一個公共點.你認為該同學(xué)的結(jié)論是否正確?若正確,請證明;若不正確,說明理由.
(Ⅲ)設(shè)直線m是圓O所在平面內(nèi)的一條直線,過點F(1,0)作直線m的垂線,垂足為T連接OT根據(jù)“線段OT長度”討論“直線m與曲線Γ的公共點個數(shù)”.(直接寫出結(jié)論,不必證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

以拋物線y2=4x的焦點為右焦點的橢圓,上頂點為B2,右頂點為A2,左、右焦點為F1、F2,且|
F1B2
|cos∠B2F1F2=
3
3
|
OB2
|,過點D(0,2)的直線l,斜率為k(k>0),l與橢圓交于M,N兩點.
(1)求橢圓的標準方程;
(2)若M,N的中點為H,且
OH
A2B2
,求出斜率k的值;
(3)在x軸上是否存在點Q(m,0),使得以QM,QN為鄰邊的四邊形是個菱形?如果存在,求出m的范圍;否則,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案