若圖中的直線l1,l2,l3的斜率為k1,k2,k3則(  )
分析:由圖中所示的直線l1,l2,l3,我們令直線l1,l2,l3的傾斜角θ1,θ2,θ3,我們易判斷出三個傾斜角與直角的大小關(guān)系,根據(jù)正切函數(shù)的符號及單調(diào)性,進(jìn)而得到答案.
解答:解:令直線l1,l2,l3的傾斜角θ1,θ2,θ3,
由已知中的圖象可得
θ3<90°<θ2<θ1,
∴k2<k1<0<k3,
故選C
點(diǎn)評:本題考查的知識點(diǎn)是直線的圖象特征,傾斜角、斜率的關(guān)系,其中熟練掌握正切函數(shù)的單調(diào)性及符號,是解答本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,平面中兩條直線l1和l 2相交于點(diǎn)O,對于平面上任意一點(diǎn)M,若x,y分別是M到直線l 1和l 2的距離,則稱有序非負(fù)實(shí)數(shù)對(x,y)是點(diǎn)M的“距離坐標(biāo)”.已知常數(shù)p≥0,q≥0,給出下列三個命題:
①若p=q=0,則“距離坐標(biāo)”為(0,0)的點(diǎn)有且只有1個;
②若pq=0,且p+q≠0,則“距離坐標(biāo)”為( p,q) 的點(diǎn)有且只有2個;
③若pq≠0則“距離坐標(biāo)”為 ( p,q) 的點(diǎn)有且只有3個.
上述命題中,正確的有
①②
①②
.(填上所有正確結(jié)論對應(yīng)的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)=3x2-3x直線l1:x=2和l2:y=3tx,其中t為常數(shù)且0<<1.直線l2與函數(shù)f(x)的圖象以及直線l1、l2與函數(shù)f(x)的圖象圍成的封閉圖形如圖中陰影所示,設(shè)這兩個陰影區(qū)域的面積之和為S(t).
(1)求函數(shù)S(t)的解析式;
(2)若函數(shù)L(t)=S(t)+6t-2,判斷L(t)是否存在極值,若存在,求出極值,若不存在,說明理由;
(3)定義函數(shù)h(x)=S(x),x∈R若過點(diǎn)A(1,m)(m≠4)可作曲線y=h(x)(x∈R)的三條切線,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知二次函數(shù)f(x)=3x2-3x直線l1:x=2和l2:y=3tx,其中t為常數(shù)且0<<1.直線l2與函數(shù)f(x)的圖象以及直線l1、l2與函數(shù)f(x)的圖象圍成的封閉圖形如圖中陰影所示,設(shè)這兩個陰影區(qū)域的面積之和為S(t).
(1)求函數(shù)S(t)的解析式;
(2)若函數(shù)L(t)=S(t)+6t-2,判斷L(t)是否存在極值,若存在,求出極值,若不存在,說明理由;
(3)定義函數(shù)h(x)=S(x),x∈R若過點(diǎn)A(1,m)(m≠4)可作曲線y=h(x)(x∈R)的三條切線,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖在平面直角坐標(biāo)系xOy中,已知圓C1:(x+3)2+(y-1)2=4和圓C2:(x-4)2+(y-5)2=4.

(1)若直線l過點(diǎn)A(4,0),且被圓C1截得的弦長為2,求直線l的方程;

(2)設(shè)P為平面上的點(diǎn),滿足:存在過點(diǎn)P的無窮多對互相垂直的直線l1l2,它們分別與圓C1C2相交,且直線l1被圓C1截得的弦長與直線l2C2截得的弦長相等.試求所有滿足條件的點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,平面中兩條直線l1和l 2相交于點(diǎn)O,對于平面上任意一點(diǎn)M,若x,y分別是M到直線l 1和l 2的距離,則稱有序非負(fù)實(shí)數(shù)對(x,y)是點(diǎn)M的“距離坐標(biāo)”.已知常數(shù)p≥0,q≥0,給出下列三個命題:

①若p=q=0,則“距離坐標(biāo)”為(0,0)的點(diǎn)有且只有1個;

②若pq=0,且p+q≠0,則“距離坐標(biāo)”為( p,q) 的點(diǎn)有且只有2個;

③若pq≠0則“距離坐標(biāo)”為 ( p,q) 的點(diǎn)有且只有3個.

上述命題中,正確的有、佗凇.(填上所有正確結(jié)論對應(yīng)的序號)

查看答案和解析>>

同步練習(xí)冊答案