一汽車廠生產(chǎn)A,B,C三類轎車,每類轎車均有舒適型和標(biāo)準(zhǔn)型兩種型號(hào),某月的產(chǎn)量如表所示(單位輛),若按A,B,C三類用分層抽樣的方法在這個(gè)月生產(chǎn)的轎車中抽取50輛,則A類轎車有10輛

 
轎車A
轎車B
轎車C
舒適型
100
150
z
標(biāo)準(zhǔn)型
300
450
600
 
(1)求下表中z的值;
(2)用隨機(jī)抽樣的方法從B類舒適型轎車中抽取8輛,經(jīng)檢測(cè)它們的得分如下:94,86,92,96,87,93,90,82把這8輛轎車的得分看作一個(gè)總體,從中任取一個(gè)得分?jǐn)?shù) 記這8輛轎車的得分的平均數(shù)為,定義事件{,且函數(shù)沒有零點(diǎn)},求事件發(fā)生的概率

(1)400;(2) 

解析試題分析:(1)設(shè)該廠本月生產(chǎn)轎車為n輛,由題意得:,求得,可得的值 (2) 求出8輛轎車的得分的平均數(shù)為,由,且函數(shù)沒有零點(diǎn) 可得,由此解得的范圍,求得發(fā)生當(dāng)且僅當(dāng)的值,從而求出事件發(fā)生的概率
試題解析:(1)設(shè)該廠本月生產(chǎn)轎車為輛,由題意得,所以  =2000-100-300-150-450-600=400                        4分
(2)  8輛轎車的得分的平均數(shù)為   6分
把8輛轎車的得分看作一個(gè)總體,從中任取一個(gè)分?jǐn)?shù)對(duì)應(yīng)的基本事件的總數(shù)為個(gè),
,且函數(shù)沒有零點(diǎn)
                  10分
發(fā)生當(dāng)且僅當(dāng)的值為:8  6,  9 2,  8 7,  9 0共4個(gè),
                              12分
考點(diǎn):列舉法計(jì)算基本事件數(shù)及事件發(fā)生的概率;分層抽樣方法

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

甲、乙、丙三人參加某次招聘會(huì),假設(shè)甲能被聘用的概率是,甲、丙兩人同時(shí)不能被聘用的概率是,乙、丙兩人同時(shí)能被聘用的概率為,且三人各自能否被聘用相互獨(dú)立.
(1)求乙、丙兩人各自被聘用的概率;
(2)設(shè)為甲、乙、丙三人中能被聘用的人數(shù)與不能被聘用的人數(shù)之差的絕對(duì)值,求的分布列與均值(數(shù)學(xué)期望).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

為了解某班學(xué)生喜愛打籃球是否與性別有關(guān),對(duì)本班48人進(jìn)行了問卷調(diào)查得到了如下的2×2列聯(lián)表:

 
喜愛打籃球
不喜愛打籃球
合計(jì)
男生
 
6
 
女生
10
 
 
合計(jì)
 
 
48
已知在全班48人中隨機(jī)抽取1人,抽到喜愛打籃球的學(xué)生的概率為.
(1)請(qǐng)將上面的2×2列聯(lián)表補(bǔ)充完整(不用寫計(jì)算過程);
(2)你是否有95%的把握認(rèn)為喜愛打籃球與性別有關(guān)?說明你的理由;
(3)現(xiàn)從女生中抽取2人進(jìn)一步調(diào)查,設(shè)其中喜愛打籃球的女生人數(shù)為X,求X的分布列與數(shù)學(xué)期望.
下面的臨界值表供參考:
P(χ2x0)或
P(K2k0)
0.10
0.05
0.010
0.005
x0(或k0)
2.706
3.841
6.635
7.879
 
(參考公式)χ2,其中nn11n12n21n22K2,其中nabcd)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知二次函數(shù)R,若是從區(qū)間中隨機(jī)抽取的一個(gè)數(shù),是從區(qū)間中隨機(jī)抽取的一個(gè)數(shù),求方程沒有實(shí)數(shù)根的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

以下莖葉圖記錄了甲、乙兩組各三名同學(xué)在期末考試中的數(shù)學(xué)成績.乙組記錄中有一個(gè)數(shù)字模糊,無法確認(rèn),假設(shè)這個(gè)數(shù)字具有隨機(jī)性,并在圖中以表示.
 
(Ⅰ)若甲、乙兩個(gè)小組的數(shù)學(xué)平均成績相同,求的值;
(Ⅱ)求乙組平均成績超過甲組平均成績的概率;
(Ⅲ)當(dāng)時(shí),分別從甲、乙兩組中各隨機(jī)選取一名同學(xué),記這兩名同學(xué)數(shù)學(xué)成績之差的絕對(duì)值為,求隨機(jī)變量的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

根據(jù)以往的成績記錄,甲、乙兩名隊(duì)員射擊擊中目標(biāo)靶的環(huán)數(shù)的頻率分布情況如圖所示.

假設(shè)每名隊(duì)員每次射擊相互獨(dú)立.
(Ⅰ)求上圖中的值;
(Ⅱ)隊(duì)員甲進(jìn)行三次射擊,求擊中目標(biāo)靶的環(huán)數(shù)不低于8環(huán)的次數(shù)的分布列及數(shù)學(xué)期望(頻率當(dāng)作概率使用);
(Ⅲ)由上圖判斷,在甲、乙兩名隊(duì)員中,哪一名隊(duì)員的射擊成績更穩(wěn)定?(結(jié)論不需證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某公司計(jì)劃在迎春節(jié)聯(lián)歡會(huì)中設(shè)一項(xiàng)抽獎(jiǎng)活動(dòng):在一個(gè)不透明的口袋中裝入外形一樣號(hào)碼分別為1,2,3,…,10的十個(gè)小球。活動(dòng)者一次從中摸出三個(gè)小球,三球號(hào)碼有且僅有兩個(gè)連號(hào)的為三等獎(jiǎng),獎(jiǎng)金30元;三球號(hào)碼都連號(hào)為二等獎(jiǎng),獎(jiǎng)金60元;三球號(hào)碼分別為1,5,10為一等獎(jiǎng),獎(jiǎng)金240元;其余情況無獎(jiǎng)金。
(1)求員工甲抽獎(jiǎng)一次所得獎(jiǎng)金ξ的分布列與期望;
(2)員工乙幸運(yùn)地先后獲得四次抽獎(jiǎng)機(jī)會(huì),他得獎(jiǎng)次數(shù)的方差是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某公司欲招聘員工,從1000名報(bào)名者中篩選200名參加筆試,按筆試成績擇優(yōu)取50名面試,再從面試對(duì)象中聘用20名員工.
(Ⅰ)求每個(gè)報(bào)名者能被聘用的概率;
(Ⅱ)隨機(jī)調(diào)查了24名筆試者的成績?nèi)缦卤硭荆?br />

分?jǐn)?shù)段
[60,65)
[65,70)
[70,75)
[75,80)
[80,85)
[85,90)
人數(shù)
1
2
6
9
5
1
請(qǐng)你預(yù)測(cè)面試的分?jǐn)?shù)線大約是多少?
(Ⅲ)公司從聘用的四男、、和二女、中選派兩人參加某項(xiàng)培訓(xùn),則選派結(jié)果為一男一女的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

由于某高中建設(shè)了新校區(qū),為了交通方便要用三輛通勤車從新校區(qū)把教師接到老校區(qū),已知從新校區(qū)到老校區(qū)有兩條公路,汽車走公路①堵車的概率為,不堵車的概率為;汽車走公路②堵車的概率為p,不堵車的概率為1-p,若甲、乙兩輛汽車走公路①,丙汽車由于其他原因走公路②,且三輛車是否堵車相互之間沒有影響.
(1)若三輛汽車中恰有一輛汽車被堵的概率為,求走公路②堵車的概率;
(2)在(1)的條件下,求三輛汽車中被堵車輛的個(gè)數(shù)ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案