【題目】某企業(yè)為了解下屬某部門對本企業(yè)職工的服務(wù)情況,隨機(jī)訪問50名職工,根據(jù)這50名職工對該部門的評分,繪制頻率分布直方圖(如圖),其中樣本數(shù)據(jù)分組區(qū)間為, ,…, , .
(1)求頻率分布圖中的值;
(2)估計(jì)該企業(yè)的職工對該部門評分不低于80的概率;
(3)從評分在的受訪職工中, 隨機(jī)抽取2人,求此2人評分都在的概率.
【答案】(1) .(2) ;(3) .
【解析】試題分析:⑴利用頻率分布直方圖中的信息,所以矩形的面積為,得到
⑵對該部門評分不低于的即為和,求出頻率,估計(jì)概率;
⑶求出評分在的受訪職工和評分都在的人數(shù),隨機(jī)抽取人,列舉法求出所有可能,利用古典概型公式解答;
解析:(1)因?yàn)?/span>,解得.
(2)由已知的頻率分布直方圖可知,50名受訪職工評分不低于80的頻率為,所以該企業(yè)職工對該部門評分不低于80的概率的估計(jì)值為;
(3)受訪職工中評分在的有: (人),記為;
受訪職工評分在的有: (人),記為,
從這5名受訪職工中隨機(jī)抽取2人,所有可能的結(jié)果共有10種,分別是:
, , , , , , , , , ,
又因?yàn)樗槿?人的評分都在的結(jié)果只有1種,即,
故所求的概率為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) 是[1,∞]上的增函數(shù).當(dāng)實(shí)數(shù)m取最大值時,若存在點(diǎn)Q,使得過Q的直線與曲線y=g(x)圍成兩個封閉圖形,且這兩個封閉圖形的面積總相等,則點(diǎn)Q的坐標(biāo)為( )
A.(0,﹣3)
B.(0,3)
C.(0,﹣2)
D.(0,2)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以下四個命題中:
①某地市高三理科學(xué)生有15000名,在一次調(diào)研測試中,數(shù)學(xué)成績 服從正態(tài)分布 ,已知 ,若按成績分層抽樣的方式抽取100份試卷進(jìn)行分析,則應(yīng)從120分以上(包括120分)的試卷中抽取 份;
②已知命題 ,則 : ;
③在 上隨機(jī)取一個數(shù) ,能使函數(shù) 在 上有零點(diǎn)的概率為 ;
④設(shè) ,則“ ”是“ ”的充要條件.
其中真命題的序號為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=(x-a)(x-b)(其中a>b),若f(x)的圖象如圖所示,則函數(shù)g(x)=ax+b的圖象大致為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)y=f″(x)是y=f′(x)的導(dǎo)數(shù).某同學(xué)經(jīng)過探究發(fā)現(xiàn),任意一個三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0)都有對稱中心(x0 , f(x0)),其中x0滿足f″(x0)=0.已知f(x)= x3﹣ x2+3x﹣ ,則f( )+f( )+f( )+…+f( )=( )
A.2013
B.2014
C.2015
D.2016
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某廠家擬在2019年舉行促銷活動,經(jīng)過調(diào)查測算,該產(chǎn)品的年銷量(即該廠的年產(chǎn)量)(單位:萬件)與年促銷費(fèi)用()(單位:萬元)滿足(為常數(shù)),如果不搞促銷活動,則該產(chǎn)品的年銷量只能是1萬件. 已知2019年生產(chǎn)該產(chǎn)品的固定投入為6萬元,每生產(chǎn)1萬件該產(chǎn)品需要再投入12萬元,廠家將每件產(chǎn)品的銷售價格定為每件產(chǎn)品平均成本的1.5倍(產(chǎn)品成本包括固定投入和再投入兩部分).
(1)將該廠家2019年該產(chǎn)品的利潤萬元表示為年促銷費(fèi)用萬元的函數(shù);
(2)該廠家2019年的年促銷費(fèi)用投入多少萬元時,廠家利潤最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,已知點(diǎn)A的極坐標(biāo)為( , ),直線l的極坐標(biāo)方程為ρcos(θ﹣ )=a,且點(diǎn)A在直線l上,
(1)求a的值及直線l的直角坐標(biāo)方程;
(2)圓C的參數(shù)方程為 (α為參數(shù)),試判斷直線l與圓C的位置關(guān)系.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)是雙曲線上一點(diǎn), , 分別是雙曲線左、右兩個焦點(diǎn),若,則等于( )
A. 1 B. 17 C. 1或17 D. 以上答案均不對
【答案】B
【解析】根據(jù)雙曲線的定義得到 根據(jù)雙曲線的焦半徑的范圍得到 故結(jié)果為17.
故答案為:B。
【題型】單選題
【結(jié)束】
10
【題目】某中學(xué)學(xué)生會為了調(diào)查愛好游泳運(yùn)動與性別是否有關(guān),通過隨機(jī)詢問110名性別不同的高中生是否愛好游泳運(yùn)動得到如下的列聯(lián)表:由并參照附表,得到的正確結(jié)論是( )
A. 在犯錯誤的概率不超過的前提下,認(rèn)為“愛好游泳運(yùn)動與性別有關(guān)”
B. 在犯錯誤的概率不超過的前提下,認(rèn)為“愛好游泳運(yùn)動與性別無關(guān)”
C. 有的把握認(rèn)為“愛好游泳運(yùn)動與性別有關(guān)”
D. 有的把握認(rèn)為“愛好游泳運(yùn)動與性別無關(guān)”
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)對于任意的都有,當(dāng)時,則且
(1)判斷的奇偶性;
(2)求在上的最大值;
(3)解關(guān)于的不等式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com