【題目】某廠家擬在2019年舉行促銷活動,經(jīng)過調(diào)查測算,該產(chǎn)品的年銷量(即該廠的年產(chǎn)量)(單位:萬件)與年促銷費(fèi)用)(單位:萬元)滿足為常數(shù)),如果不搞促銷活動,則該產(chǎn)品的年銷量只能是1萬件. 已知2019年生產(chǎn)該產(chǎn)品的固定投入為6萬元,每生產(chǎn)1萬件該產(chǎn)品需要再投入12萬元,廠家將每件產(chǎn)品的銷售價格定為每件產(chǎn)品平均成本的1.5倍(產(chǎn)品成本包括固定投入和再投入兩部分).

(1)將該廠家2019年該產(chǎn)品的利潤萬元表示為年促銷費(fèi)用萬元的函數(shù);

(2)該廠家2019年的年促銷費(fèi)用投入多少萬元時,廠家利潤最大?

【答案】(1);(2)2019年的年促銷費(fèi)用投入2.5萬元時,該廠家利潤最大

【解析】

(Ⅰ)由題意,根據(jù),求得的值,得到,進(jìn)而得到函數(shù)利潤萬元表示為年促銷費(fèi)用萬元的函數(shù);

(Ⅱ)由(Ⅰ)知,化簡函數(shù)的解析式,利用基本不等式,即可求解.

(1)由題意有,得

(2)由(1)知:

當(dāng)且僅當(dāng)時,有最大值.

答: 2019年的年促銷費(fèi)用投入2.5萬元時,該廠家利潤最大.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】網(wǎng)上購物逐步走進(jìn)大學(xué)生活,某大學(xué)學(xué)生宿舍4人積極參加網(wǎng)購,大家約定:每個人通過擲一枚質(zhì)地均勻的骰子決定自己去哪家購物,擲出點數(shù)為5或6的人去淘寶網(wǎng)購物,擲出點數(shù)小于5的人去京東商場購物,且參加者必須從淘寶和京東商城選擇一家購物.
(1)求這4人中恰有1人去淘寶網(wǎng)購物的概率;
(2)用ξ、η分別表示這4人中去淘寶網(wǎng)和京東商城購物的人數(shù),記X=ξη,求隨機(jī)變量X的分布列與數(shù)學(xué)期望EX.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】命題方程表示雙曲線;命題不等式的解集是. 為假, 為真,的取值范圍.

【答案】

【解析】試題分析:由命題方程表示雙曲線,求出的取值范圍,由命題不等式的解集是,求出的取值范圍,由為假, 為真,得出一真一假,分兩種情況即可得出的取值范圍.

試題解析:

,

范圍為

型】解答
結(jié)束】
18

【題目】如圖,設(shè)是圓上的動點,軸上的投影, 上一點,.

1)當(dāng)在圓上運(yùn)動時,求點的軌跡的方程;

2)求過點且斜率為的直線被所截線段的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系中,曲線 的極坐標(biāo)方程是 ,以極點為原點 ,極軸為 軸正半軸(兩坐標(biāo)系取相同的單位長度)的直角坐標(biāo)系 中,曲線 的參數(shù)方程為: 為參數(shù)).
(1)求曲線 的直角坐標(biāo)方程與曲線 的普通方程;
(2)將曲線 經(jīng)過伸縮變換 后得到曲線 ,若 分別是曲線 和曲線 上的動點,求 的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)為了解下屬某部門對本企業(yè)職工的服務(wù)情況,隨機(jī)訪問50名職工,根據(jù)這50名職工對該部門的評分,繪制頻率分布直方圖(如圖),其中樣本數(shù)據(jù)分組區(qū)間為 ,…, , .

(1)求頻率分布圖中的值;

(2)估計該企業(yè)的職工對該部門評分不低于80的概率;

(3)從評分在的受訪職工中, 隨機(jī)抽取2人,求此2人評分都在的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某產(chǎn)品生產(chǎn)廠家生產(chǎn)一種產(chǎn)品,每生產(chǎn)這種產(chǎn)品 (百臺),其總成本為萬元,其中固定成本為42萬元,且每生產(chǎn)1百臺的生產(chǎn)成本為15萬元總成本固定成本生產(chǎn)成本銷售收入萬元滿足假定該產(chǎn)品產(chǎn)銷平衡即生產(chǎn)的產(chǎn)品都能賣掉,根據(jù)上述條件,完成下列問題:

寫出總利潤函數(shù)的解析式利潤銷售收入總成本

要使工廠有盈利,求產(chǎn)量的范圍;

工廠生產(chǎn)多少臺產(chǎn)品時,可使盈利最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】秦九韶是我國南宋時期的數(shù)學(xué)家,普州(現(xiàn)四川省安岳縣)人,他在所著的《數(shù)書九章》中提出的多項式求值的秦九韶算法,至今仍是比較先進(jìn)的算法,如圖所示的程序框圖給出了利用秦九韶算法求某多項式值的一個實例,若輸入x的值為2,則輸出v的值為(
A.210﹣1
B.210
C.310﹣1
D.310

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C1 + =1(a>b>0)的離心率為 ,P(﹣2,1)是C1上一點.
(1)求橢圓C1的方程;
(2)設(shè)A,B,Q是P分別關(guān)于兩坐標(biāo)軸及坐標(biāo)原點的對稱點,平行于AB的直線l交C1于異于P、Q的兩點C,D,點C關(guān)于原點的對稱點為E.證明:直線PD、PE與y軸圍成的三角形是等腰三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的前n項和為Sn , 且對任意正整數(shù)n,都有an= +2成立.
(1)記bn=log2an , 求數(shù)列{bn}的通項公式;
(2)設(shè)cn= ,求數(shù)列{cn}的前n項和Tn

查看答案和解析>>

同步練習(xí)冊答案