【題目】已知小明需從幾門課程中選擇一門作為自己的特長(zhǎng)課程來(lái)學(xué)習(xí),小明選完課后,同寢室的其他3位同學(xué)根據(jù)小明的興趣愛(ài)好對(duì)小明選擇的課程猜測(cè)如下:
甲說(shuō):“小明選的不是籃球,選的是排球”;
乙說(shuō):“小明選的不是排球,選的是書法”
丙說(shuō):“小明選的不是排球,選的也不是現(xiàn)代舞”.
已知3人中有1人說(shuō)的全對(duì),有1人說(shuō)對(duì)了一半,另1人說(shuō)的全不對(duì),由此可推測(cè)小明選擇的( )
A.可能是書法B.可能是現(xiàn)代舞C.一定是排球D.可能是籃球
【答案】D
【解析】
由題意依次假設(shè)小明的選擇,逐一驗(yàn)證即可得解.
若小明選的是書法,則甲說(shuō)的對(duì)一半,乙說(shuō)的全對(duì),丙說(shuō)的全對(duì),不合題意,故A錯(cuò)誤;
若小明選的是現(xiàn)代舞,則甲說(shuō)的對(duì)一半,乙說(shuō)的對(duì)一半,丙說(shuō)的對(duì)一半,不合題意,故B錯(cuò)誤;
若小明選的是排球,則甲說(shuō)的全對(duì),乙說(shuō)的全不對(duì),丙說(shuō)的對(duì)一半,符合題意,
若小明選的是籃球,則甲說(shuō)的全不對(duì),乙說(shuō)的對(duì)一半,丙說(shuō)的全對(duì),符合題意,故C錯(cuò)誤,D正確.
故選:D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知偶函數(shù)f(x)在區(qū)間[0,+∞)上單調(diào)遞增,則滿足f(2x﹣1)<f(3)的x取值集合是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知集合A={x|3≤x<6},B={x|2<x<9},R是實(shí)數(shù)集.分別求R(A∩B),(RB)∪A.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】“光明天使”基金收到甲乙丙三兄弟24萬(wàn)、25萬(wàn)、26萬(wàn)三筆捐款(一人捐一筆款),記者采訪這三兄弟時(shí),甲說(shuō):“乙捐的不是最少.”乙說(shuō):“甲捐的比丙多.”丙說(shuō):“若我捐的最少,則甲捐的不是最多.”根據(jù)這三兄弟的回答,確定乙捐了_________萬(wàn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知命題p:x∈R,sinx≤1,則¬p為( )
A.x∈R,sinx≥1
B.x∈R,sinx≥1
C.x∈R,sinx>1
D.x∈R,sinx>1
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)在[﹣5,5]上是偶函數(shù),且在[0,5]上是單調(diào)函數(shù),若f(﹣4)<f(﹣2),則下列不等式一定成立的是( )
A.f(﹣1)<f(3)
B.f(2)<f(3)
C.f(﹣3)<f(5)
D.f(0)>f(1)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列命題正確是( ).
A. 垂直于同一直線的兩直線平行 B. 垂直于同一平面的兩平面平行
C. 平行于同一平面的兩直線平行 D. 垂直于同一直線的兩平面平行
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在對(duì)兩個(gè)變量x,y進(jìn)行線性回歸分析時(shí)有下列步驟:
①對(duì)所求出的回歸方程作出解釋.
②收集數(shù)據(jù).
③求線性回歸方程.
④求相關(guān)系數(shù).
⑤根據(jù)所搜集的數(shù)據(jù)繪制散點(diǎn)圖.
如果根據(jù)可靠性要求能夠作出變量x,y具有線性相關(guān)的結(jié)論,則在下列操作順序中正確的是( )
A. ①②⑤③④ B. ③②④⑤①
C. ②④③①⑤ D. ②⑤④③①
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】
已知函數(shù),。
(1)若函數(shù)在處的切線與函數(shù)在處的切線互相平行,求實(shí)數(shù)的值;
(2)設(shè)函數(shù)。
(ⅰ)當(dāng)實(shí)數(shù)時(shí),試判斷函數(shù)在上的單調(diào)性;
(ⅱ)如果是的兩個(gè)零點(diǎn),為函數(shù)的導(dǎo)函數(shù),證明:。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com