分析 (Ⅰ)由$f(x)=lg\frac{1+ax}{1-x}(a>0)$為奇函數(shù)得:f(-x)+f(x)=0,即可求a;
(Ⅱ)當(dāng)b>1時(shí),設(shè) $h(x)=g(x)-ln|x|=\frac{2}{x^2}+b-ln|x|$,則h(x)是偶函數(shù)且在(0,+∞)上遞減,即可討論方徎g(x)=ln|x|實(shí)數(shù)根的個(gè)數(shù);
(Ⅲ)不等式f(1-x)≤lgg(x)等價(jià)于$\frac{2-x}{x}≤\frac{2}{x^2}+b$,即$b≥-\frac{2}{x^2}+\frac{2}{x}-1$在$x∈[\frac{1}{3},\frac{1}{2}]$有解,故只需$b≥{(-\frac{2}{x^2}+\frac{2}{x}-1)_{min}}$,即可求b的取值范圍.
解答 解:(Ⅰ)由$f(x)=lg\frac{1+ax}{1-x}(a>0)$為奇函數(shù)得:f(-x)+f(x)=0,
即$lg\frac{1-ax}{1+x}+lg\frac{1+ax}{1-x}=lg\frac{{1-{a^2}{x^2}}}{{1-{x^2}}}=0$,(2分)
所以$\frac{{1-{a^2}{x^2}}}{{1-{x^2}}}=1$,解得a=1,(4分)
(Ⅱ)當(dāng)b>1時(shí),設(shè) $h(x)=g(x)-ln|x|=\frac{2}{x^2}+b-ln|x|$,
則h(x)是偶函數(shù)且在(0,+∞)上遞減
又$h(1)=2+b>0,h({e^{2b}})=\frac{2}{{{e^{4b}}}}-b<0$
所以h(x)在(0,+∞)上有惟一的零點(diǎn),方徎g(x)=ln|x|有2個(gè)實(shí)數(shù)根.…(8分)
(Ⅲ)不等式f(1-x)≤lgg(x)等價(jià)于$\frac{2-x}{x}≤\frac{2}{x^2}+b$,
即$b≥-\frac{2}{x^2}+\frac{2}{x}-1$在$x∈[\frac{1}{3},\frac{1}{2}]$有解,
故只需$b≥{(-\frac{2}{x^2}+\frac{2}{x}-1)_{min}}$,(10分)
因?yàn)?x∈[\frac{1}{3},\frac{1}{2}]$,所以$\frac{1}{x}∈[2,3]$,
函數(shù)$y=-2{(\frac{1}{x}-\frac{1}{2})^2}-\frac{1}{2}$,
所以${y_{min}}=-2{(3-\frac{1}{2})^2}-\frac{1}{2}=-13$,
所以b≥-13,所以b的取值范圍是[-13,+∞).(12分)
點(diǎn)評 本題考查函數(shù)的奇偶性、單調(diào)性、考查有解問題,考查學(xué)生分析解決問題的能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | x=2或3x-4y+10=0 | B. | x=2或x+2y-10=0 | C. | y=4或3x-4y+10=0 | D. | y=4或x+2y-10=0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $8\sqrt{3}$ | B. | $9\sqrt{3}$ | C. | $18\sqrt{3}$ | D. | $27\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
組號 | 第一組 | 第二組 | 第三組 | 第四組 | 第五組 |
分組 | [50,60) | [60,70) | [70,80) | [80,90) | [90,100] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2lg5 | B. | 0 | C. | -1 | D. | -2lg5 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com