A. | 1 | B. | 2 | C. | 3 | D. | 4 |
分析 ①,命題“?x∈R,x2+x+1>0”的否定是:“?x0∈R,x02+x0+1≤0”;
②,命題“若x=y,則sinx=siny”的否命題是:“若x≠y,則sinx≠siny”;
③,當(dāng)“7<k<9”時(shí),滿足k-4>10-k>0,此時(shí)“方程$\frac{{x}^{2}}{k-4}$+$\frac{{y}^{2}}{10-k}$=1表示焦點(diǎn)在x軸上的橢圓“;若“方程$\frac{{x}^{2}}{k-4}$+$\frac{{y}^{2}}{10-k}$=1表示焦點(diǎn)在x軸上的橢圓,則k-4>10-k>0,即7<k<10;
④,m=-3時(shí)“l(fā)1:2x+(m+1)y+4=0與l2:mx+3y-2=0平行.
解答 解:對(duì)于①,命題“?x∈R,x2+x+1>0”的否定是:“?x0∈R,x02+x0+1≤0”,故正確;
對(duì)于②,命題“若x=y,則sinx=siny”的否命題是:“若x≠y,則sinx≠siny”,故錯(cuò);
對(duì)于③,當(dāng)“7<k<9”時(shí),滿足k-4>10-k>0,此時(shí)“方程$\frac{{x}^{2}}{k-4}$+$\frac{{y}^{2}}{10-k}$=1表示焦點(diǎn)在x軸上的橢圓“;若“方程$\frac{{x}^{2}}{k-4}$+$\frac{{y}^{2}}{10-k}$=1表示焦點(diǎn)在x軸上的橢圓,則k-4>10-k>0,即7<k<10,故正確;
對(duì)于④,“m=-3”時(shí)“l(fā)1:2x+(m+1)y+4=0與l2:mx+3y-2=0平行”,故錯(cuò).
故選:B.
點(diǎn)評(píng) 本題考查了命題真假的判定,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2x+y+7=0 | B. | 2x-y+5=0 | C. | x-2y+1=0 | D. | x-2y+5=0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
x | 3 | 4 | 5 | 5 | 7 |
y | 2 | 4 | 5 | 6 | 8 |
A. | (5,5) | B. | (4.5,5) | C. | (4.8,5) | D. | (5,6) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 若f(x1)=f(x2)=0,則x1-x2=kπ(k∈Z) | |
B. | 函數(shù)f(x)的圖象關(guān)于(-$\frac{π}{8}$,0)對(duì)稱 | |
C. | 函數(shù)f(x)的圖象與g(x)=3cos(2x+$\frac{π}{4}$)的圖象相同 | |
D. | 函數(shù)f(x)在[-$\frac{1}{8}$π,$\frac{3}{8}$π]上遞增 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2x-3y+4=0 | B. | 3x-2y+1=0 | C. | 2x+3y-8=0 | D. | 3x+2y-7=0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com