【題目】如圖,、是以為直徑的圓上兩點(diǎn),,,是上一點(diǎn),且,將圓沿直徑折起,使點(diǎn)在平面的射影在上,已知.
(1)求證:⊥平面;
(2)求證:平面;
(3)求三棱錐的體積.
【答案】(1)證明見解析(2)證明見解析(3)
【解析】
(1)依題AD⊥BD,再證明CE⊥AD,即得證;
(2)可證明,,有AD∥EF,即得證;
(3)轉(zhuǎn)化,即得解.
(1)證明:依題AD⊥BD,
∵CE⊥平面ABD,且平面ABD
∴CE⊥AD,
∵BD∩CE=E,∴AD⊥平面BCE.
(2)證明:Rt△BCE中,,∴BE=2,
Rt△ABD中,AB=,AD=,∴BD=3.
∴.
∴AD∥EF,∵AD在平面CEF外,∴AD∥平面CEF.
(3)解:由(2)知AD∥EF,AD⊥ED,且ED=BD—BE=1,
∴F到AD的距離等于E到AD的距離為1.∴S△FAD=.
∵CE⊥平面ABD,
∴.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),且在處的切線與平行.
求的單調(diào)區(qū)間;
若存在區(qū)間,使在上的值域是,求b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下面四個命題:
①在定義域上單調(diào)遞增;
②若銳角,滿足,則;
③是定義在上的偶函數(shù),且在上是增函數(shù),若,則;
④函數(shù)的一個對稱中心是;
其中真命題的序號為______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校100名學(xué)生期中考試數(shù)學(xué)成績的頻率分布直方圖如圖所示,其中成績分組區(qū)間如下:
組號 | 第一組 | 第二組 | 第三組 | 第四組 | 第五組 |
分組 | [50,60) | [60,70) | [70,80) | [80,90) | [90,100] |
(1)求圖中a的值;
(2)根據(jù)頻率分布直方圖,估計(jì)這100名學(xué)生期中考試數(shù)學(xué)成績的平均分;
(3)現(xiàn)用分層抽樣的方法從第3、4、5組中隨機(jī)抽取6名學(xué)生,將該樣本看成一個總體,從中隨機(jī)抽取2名,求其中恰有1人的分?jǐn)?shù)不低于90分的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓E的方程為 (a>b>0),點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)A的坐標(biāo)為(a,0),點(diǎn)B的坐標(biāo)為(0,b),點(diǎn)M在線段AB上,滿足BM=2MA,直線OM的斜率為.
(1)求E的離心率e;
(2)設(shè)點(diǎn)C的坐標(biāo)為(0,-b),N為線段AC的中點(diǎn),點(diǎn)N關(guān)于直線AB的對稱點(diǎn)的縱坐標(biāo)為,求E的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知圓C與y軸相切于點(diǎn)T(0,2),與x軸的正半軸交于兩點(diǎn) (點(diǎn)在點(diǎn)的左側(cè)),且.
(1)求圓C的方程;(2)過點(diǎn)任作一直線與圓O: 相交于兩點(diǎn),連接,求證: 定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對某校高三年級學(xué)生參加社區(qū)服務(wù)次數(shù)進(jìn)行統(tǒng)計(jì),隨機(jī)抽取M名學(xué)生作為樣本,得到這M名學(xué)生參加社區(qū)服務(wù)的次數(shù),根據(jù)此數(shù)據(jù)作出了頻數(shù)與頻率的統(tǒng)計(jì)表和頻率分布直方圖.
分組 | 頻數(shù) | 頻率 |
[10,15) | 10 | 0.25 |
[15,20) | 24 | n |
[20,25) | m | p |
[25,30] | 2 | 0.05 |
合計(jì) | M | 1 |
(1)求出表中M,p及圖中a的值;
(2)若該校高三學(xué)生有240人,試估計(jì)該校高三學(xué)生參加社區(qū)服務(wù)的次數(shù)在區(qū)間[10,15)內(nèi)的人數(shù);
(3)估計(jì)這次學(xué)生參加社區(qū)服務(wù)人數(shù)的眾數(shù)、中位數(shù)以及平均數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,曲線由上半橢圓: (, )和部分拋物線: ()連接而成, 與的公共點(diǎn)為, ,其中的離心率為.
(1)求, 的值;
(2)過點(diǎn)的直線與, 分別交于點(diǎn), (均異于點(diǎn), ),是否存在直線,使得以為直徑的圓恰好過點(diǎn),若存在,求出直線的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知中心在原點(diǎn),焦點(diǎn)在軸上的橢圓過點(diǎn),離心率為.
(1)求橢圓的方程;
(2)直線過橢圓的左焦點(diǎn),且與橢圓交于兩點(diǎn),若的面積為,求直線的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com