【題目】在底面半徑為6的圓柱內(nèi),有兩個半徑也為6的球面,兩球的球心距為13,若作一個平面與兩個球都相切,且與圓柱面相交成一橢圓,則橢圓的長軸長為

【答案】13

【解析】試題設(shè)兩個球的球心分別為O1、O2,橢圓的長軸為AB,作出由ABO1O2確定平面α與兩個球及圓柱的截面,并過AO1O2的垂線,交圓柱的母線于點C,連接O1AB切球O1的切點D.分別在Rt△O1DE中和Rt△ABC中,利用∠BAC=∠DO1E和余弦的定義,結(jié)合題中的數(shù)據(jù)建立關(guān)系式,即可解出AB的長,即得該橢圓的長軸長.

解:設(shè)兩個球的球心分別為O1、O2,所得橢圓的長軸為AB,

直線ABO1O2交于點E,設(shè)它們確定平面α

作出平面α與兩個球及圓柱的截面,如圖所示

AO1O2的垂線,交圓柱的母線于點C,設(shè)AB切球O1的大圓于點D,連接O1D

∵Rt△O1DE中,O1E=O1O2=,O1D=6

∴cos∠DO1E==

銳角∠DO1E∠BAC的兩邊對應(yīng)互相垂直

∴∠BAC=∠DO1E,

Rt△ABC中,cos∠BAC==

∵AC長等于球O1的直徑,得AC=12

橢圓的長軸AB=13

故答案為:13

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知直線l過點.

1)若直線l的縱截距和橫截距相等,求直線l的方程;

2)若直線l與兩坐標軸圍成的三角形的面積為,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為有效預防新冠肺炎對老年人的侵害,某醫(yī)院到社區(qū)檢查老年人的體質(zhì)健康情況.從該社區(qū)全體老年人中,隨機抽取12名進行體質(zhì)健康測試,根據(jù)測試成績(百分制)繪制莖葉圖如下.根據(jù)老年人體質(zhì)健康標準,可知成績不低于80分為優(yōu)良,且體質(zhì)優(yōu)良的老年人感染新冠肺炎的可能性較低.

(Ⅰ)從抽取的12人中隨機選取3人,記表示成績優(yōu)良的人數(shù),求的分布列及數(shù)學期望;

(Ⅱ)將頻率視為概率,根據(jù)用樣本估計總體的思想,在該社區(qū)全體老年人中依次抽取10人,若抽到人的成績是優(yōu)良的可能性最大,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) ,x R其中a>0.

(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;

(Ⅱ)若函數(shù)f(x)在區(qū)間(-3,0)內(nèi)恰有兩個零點,求a的取值范圍;

(Ⅲ)當a=1時,設(shè)函數(shù)f(x)在區(qū)間[t,t+3]上的最大值為M(t),最小值為m(t),記 ,求函數(shù)g(t)在區(qū)間[-4,-1]上的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】我國是世界上嚴重缺水的國家,某市政府為了鼓勵居民節(jié)約用水,計劃調(diào)整居民生活用水收費方案,擬確定一個合理的月用水量標準(噸)、一位居民的月用水量不超過的部分按平價收費,超出的部分按議價收費.為了了解居民用水情況,通過抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照[0,0.5)[0.5,1),,[4,4.5]分成9組,制成了如圖所示的頻率分布直方圖.

)求直方圖中a的值;

)設(shè)該市有30萬居民,估計全市居民中月均用水量不低于3噸的人數(shù),并說明理由;

)若該市政府希望使85%的居民每月的用水量不超過標準(噸),估計的值,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】以下是我們常見的空間幾何體.

1 2 3 4 5 6 7 8 9)(10

11

1)以上幾何體中哪些是棱柱?

2)一個幾何體為棱柱的充要條件是什么?

3)如何求以上幾何體的表面積?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)當時,解方程.

2)當時,恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)為奇函數(shù).

1)求實數(shù)的值;

2)用定義法討論并證明函數(shù)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】數(shù)列{an}滿足an+1+﹣1nan=2n﹣1,則{an}的前60項和為( )

A. 3690 B. 3660 C. 1845 D. 1830

查看答案和解析>>

同步練習冊答案