【題目】在平面直角坐標系中,已知直線l過點.

1)若直線l的縱截距和橫截距相等,求直線l的方程;

2)若直線l與兩坐標軸圍成的三角形的面積為,求直線l的方程.

【答案】1,(2.

【解析】

(1)按截距為0和截距不為0,分兩種情況求解方程即可;

(2)設出直線方程,確定其橫縱截距后,根據(jù)面積公式列等式求解即可.

(1)①若直線l截距為0,則其過原點,可得直線l的方程為,

②若直線l截距不為0,設直線l的方程為,

代點入方程可得,解得,

此時直線l的方程為,

綜上所述,所求直線l的方程為;

(2)由題意知直線l的斜率存在且不為零,

故可設直線l的方程為(),

可得直線l與坐標軸的交點坐標為,,

因為直線l與兩坐標軸圍成的三角形的面積為,

則有,解得.

故所求直線方程為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD中,E、F分別是BC、CD的中點,GEF的中點,現(xiàn)在沿AE、AFEF把這個正方形折成一個空間圖形,使B、C、D三點重合,重合后的點記為H,那么,在這個空間圖形中必有( 。

A. 所在平面B. 所在平面

C. 所在平面D. 所在平面

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知z為虛數(shù),z+為實數(shù).

(1)z-2為純虛數(shù),求虛數(shù)z.

(2)|z-4|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)求不等式的解集;

(2)若恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某港灣的平面示意圖如圖所示,、、分別是海岸線上的三個集鎮(zhèn),位于的正南方向處,位于的北偏東方向.隨著經(jīng)濟的發(fā)展,為緩解集鎮(zhèn)的交通壓力,擬在海岸線、上分別修建碼頭、,開辟水上航線,勘測時發(fā)現(xiàn):以為圓心,為半徑的扇形區(qū)域為淺水區(qū),不適宜船只航行.

1)能否求出集鎮(zhèn)、間的直線距離?

2)根據(jù)勘測要求,要使、之間的直線航線最短,直線與圓應滿足什么關系?

3)應怎樣確定碼頭、的位置,才能使得、之間的直線航線最短?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,平面,底面是平行四邊形,的兩個三等分點.

(1)求證平面

(2)若平面平面,求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知圓O和點,由圓O外一點P向圓O引切線,Q為切點,且有 .

1)求點P的軌跡方程,并說明點P的軌跡是什么樣的幾何圖形?

2)求的最小值;

3)以P為圓心作圓,使它與圓O有公共點,試在其中求出半徑最小的圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】給定空間中十個點,其中任意四點不在一個平面上,將某些點之間用線段相連,若得到的圖形中沒有三角形也沒有空間四邊形,試確定所連線段數(shù)目的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在底面半徑為6的圓柱內(nèi),有兩個半徑也為6的球面,兩球的球心距為13,若作一個平面與兩個球都相切,且與圓柱面相交成一橢圓,則橢圓的長軸長為

查看答案和解析>>

同步練習冊答案