已知點P在橢圓
x2
49
+
y2
24
=1
上,F(xiàn)1、F2是橢圓的焦點,且PF1⊥PF2,求
(1)|PF1|•|PF2|
(2)△PF1F2的面積.
(1)∵橢圓方程為
x2
49
+
y2
24
=1
,
∴a2=49,b2=24,可得c2=a2-b2=25,即a=7,c=5
設(shè)|PF1|=m,|PF2|=n,則有
m+n=2a=14-----(1)
m2+n2=(2c)2=100--(2)

由(1)2-(2),得2mn=96,即mn=48,
∴|PF1|•|PF2|=48
(2)由(1),可得|PF1|•|PF2|=48,
∵PF1⊥PF2,得∠F1PF2=90°
∴△PF1F2的面積S=
1
2
|PF1|•|PF2|=
1
2
×
48=24.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

中心在原點,焦點在y軸,離心率為
1
2
的橢圓方程可能為( 。
A.
x2
4
+
y2
3
=1
B.
x2
3
+
y2
4
=1
C.
x2
4
+y2=1
D.x2+
y2
4
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)橢圓C:
x2
a2
+
y2
2
=1(a>0)
的左右焦點分別為F1、F2,A是橢圓C上的一點,且
AF2
F1F2
=0
,坐標(biāo)原點O到直線AF1的距離為
1
3
|OF1|

(1)求橢圓C的方程;
(2)設(shè)Q是橢圓C上的一點,過點Q的直線l交x軸于點F(-1,0),交y軸于點M,若|MQ|=2|QF|,求直線l的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若過橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的焦點且垂直于x軸的直線被橢圓截得的弦長為a,則該橢圓的離心率為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知點P為橢圓C:
x2
4
+
y2
3
=1上動點,F(xiàn)1,F(xiàn)2分別是橢圓C的焦點,則|PF1|-|PF2|的最大值為(  )
A.2B.3C.2
3
D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

雙曲線的實軸長為12,焦距為20,則該雙曲線的標(biāo)準(zhǔn)方程為( 。
A.
x2
36
-
y2
64
=1
B.
x2
64
-
y2
36
=1
C.
x2
36
-
y2
64
=1
x2
64
-
y2
36
=1
D.
y2
36
-
x2
64
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,函數(shù)y=f(x)的圖象是中心在原點、焦點在x軸上的橢圓的兩段弧,則不等式f(x)<f(-x)+x的解集為(  )
A.{x|-
2
<x<0或
2
<x≤2}
B.{x|-2≤x<-
2
2
<x≤2}
C.{x|-2≤x<-
2
2
2
2
<x≤2}
D.{x|-
2
<x<
2
,且x≠0}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知橢圓的一個焦點為F1(-3,0),長軸長為10,中心在坐標(biāo)原點,則此橢圓的離心率為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

中心在原點,準(zhǔn)線方程為y=±5,離心率為
5
5
的橢圓方程為( 。
A.
x2
4
+
y2
5
=1
B.
x2
5
+
y2
4
=1
C.
x2
4
+
y2
3
=1
D.
x2
3
+
y2
4
=1

查看答案和解析>>

同步練習(xí)冊答案