精英家教網 > 高中數學 > 題目詳情
橢圓經過點,對稱軸為坐標軸,焦點軸上,離心率
(Ⅰ)求橢圓的方程;
(Ⅱ)求的角平分線所在直線的方程。
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分12分)
已知橢圓的兩焦點為
(I)求此橢圓的方程;
(II)設直線與此橢圓相交于不同的兩點,求m的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分14分)
已知橢圓與射線y=(x交于點A,過A作傾斜角互補的兩條直線,
它們與橢圓的另一個交點分別為點B和點C.
(Ⅰ)求證:直線BC的斜率為定值,并求這個定值;
(Ⅱ)求三角形ABC的面積最大值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

設橢圓M(ab>0)的離心率為,長軸長為,設過右焦點F
斜角為的直線交橢圓MAB兩點。
(Ⅰ)求橢圓M的方程;
(2)設過右焦點F且與直線AB垂直的直線交橢圓MC,D,求|AB| + |CD|的最小
值。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知橢圓為其左、右焦點,A為右頂點,l為左準線,過的直線與橢圓相交于P,Q兩點,且有

(1)求橢圓C的離心率e的最小值;
(2),求證:M,N兩點的縱坐標之積是定值。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(10分)已知橢圓
(1)求橢圓的焦點頂點坐標、離心率及準線方程;
(2)斜率為1的直線l過橢圓上頂點且交橢圓于A、B兩點,求|AB|的長

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知橢圓的離心率為,過右焦點且斜率為的直線與相交于兩點.若,則
A.1B.C.D.2

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

如下圖,橢圓中心在坐標原點,焦點在坐標軸上,A、B是頂點,F是左焦點;當BF⊥AB時,此類橢圓稱為 “黃金橢圓”,其離心率為。類比“黃金橢圓”可推算出“黃金雙曲線”的離心率e=         。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題


請閱讀以下材料,然后解決問題:
①設橢圓的長半軸長為a,短半軸長為b,則橢圓的面積為ab
②我們把由半橢圓C1+="1" (x≤0)與半橢圓C2+="1" (x≥0)合成的曲線稱作“果圓”,其中=+,a>0,b>c>0
如右上圖,設點F0,F1,F2是相應橢圓的焦點,A1,A2B1B2是“果圓”與x,y軸的交點,若△F0 F1 F2是邊長為1的等邊三角形,則上述“果圓”的面積為                               。

查看答案和解析>>

同步練習冊答案