已知橢圓為其左、右焦點,A為右頂點,l為左準線,過的直線與橢圓相交于P,Q兩點,且有

(1)求橢圓C的離心率e的最小值;
(2),求證:M,N兩點的縱坐標之積是定值。
(1);(2)略
聯(lián)立方程,消去,化簡得.

設(shè),則有,


,          

,

,即
化簡可得.
(1)由,可得到.即.
橢圓的離心率的最小值為.
(2)的方程為,與的方程:聯(lián)立可得點的縱坐標為,同理可得.
(定值)
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓>0)上一點(3,4),若,求橢圓方程。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題12分)已知中心為坐標原點O,焦點在x軸上的橢圓的兩個短軸端點和左右焦點所組成的四邊形是面積為2的正方形,
(1)求橢圓的標準方程;
(2)過點P(0,2)的直線l與橢圓交于點A,B,當△OAB面積最大時,求直線l的方程。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分16分)已知橢圓的左、右焦點分別為,下頂點為,點是橢圓上任一點,⊙是以為直徑的圓.

(Ⅰ)當⊙的面積為時,求所在直線的方程;
(Ⅱ)當⊙與直線相切時,求⊙的方程;
(Ⅲ)求證:⊙總與某個定圓相切.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設(shè),分別是橢圓的左、右焦點,與直線相切的交橢圓于點,恰好是直線的切點.
(1)求該橢圓的離心率;
(2)若點到橢圓的右準線的距離為,過橢圓的上頂點A的直線與交于B、C兩點,且,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設(shè)分別是橢圓的左右焦點,若在其右準線上存在點
使得線段的垂直平分線恰好經(jīng)過,求的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

橢圓經(jīng)過點,對稱軸為坐標軸,焦點軸上,離心率
(Ⅰ)求橢圓的方程;
(Ⅱ)求的角平分線所在直線的方程。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

對于橢圓,定義為橢圓的離心率,橢圓離心率的取值范圍是,離心率越大橢圓越“扁”,離心率越小則橢圓越“圓”.若兩橢圓的離心率相等,我們稱兩橢圓相似.已知橢圓與橢圓相似,則的值為  

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知橢圓的中心在坐標原點,焦點在x軸上,以其兩個焦點和短軸的兩個端點為頂點的
四邊形是一個面積為4的正方形,設(shè)P為該橢圓上的動點,C、D的坐標分別是,則PC·PD的最大值為  (     )
A   4        B       C    3     D   +2

查看答案和解析>>

同步練習冊答案