若x3=a0+a1(x-2)+a2(x-2)2+a3(x-2)3,則a2的值為( 。
A、12B、9C、6D、3
考點:二項式定理的應用
專題:二項式定理
分析:根據(jù)x3=[2+(x-2)]3=a0+a1(x-2)+a2(x-2)2+a3(x-2)3,可得a2的值.
解答: 解:∵x3=[2+(x-2)]3=a0+a1(x-2)+a2(x-2)2+a3(x-2)3,
則a2的值為
C
2
3
×2=6,
故選:C.
點評:本題主要考查二項式定理的應用,二項展開式的通項公式,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知拋物線y2=ax(a>0),直線l過焦點F且與x軸不重合,則拋物線被l垂直平分的弦( 。
A、不存在B、有且僅有一條
C、有2條D、有3條

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,線段AB夾在一個直二面角的兩個半平面內(nèi),它與兩個半平面所成角都是30°,則AB與這個二面角的棱l所成角為( 。
A、30°B、45°
C、60°D、90°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知在△ABC中,AB=AC,∠CAB=
π
6
,M為△ABC的外心,且
CM
CA
CB
,則λ+2μ=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設數(shù)列{an} 的前n項和為 Sn,令Tn=
S1+S2+…+Sn
n
,稱 Tn為數(shù)列 a1,a2,…,an的“理想數(shù)“,已知數(shù)列a1,a2,…,a20的“理想數(shù)“為21,那么數(shù)列2,a1,a2,…,a20 的“理想數(shù)”為( 。
A、23B、24C、22D、20

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設點A是拋物線y2=4x上一點,點B(1.0),點M是線段AB的中點,若|AB|=3,則M 到直線x=-1的距離為( 。
A、5
B、
3
2
C、2
D、
5
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知不等式|x-m|<1成立的一個充分非必要條件是
1
3
<x<
1
2
,則實數(shù)m的取值范圍是( 。
A、[-
4
3
1
2
]
B、[-
1
2
4
3
]
C、(-∞,-
1
2
)
D、[
4
3
,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在△ABC中,DE∥BC,BE∥DF,若BC=4.DE=3,EF=1,則EC的長為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ax3-6ax2+b,是否存在實數(shù)a,b,使f(x)在[-1,2]上取得最大值3,最小值-29?若存在,求出a,b的值;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案