【題目】已知.
(1)當(dāng)時,求證:在上單調(diào)遞減;
(2)若對任意,恒成立,求實數(shù)的取值范圍.
【答案】(1)證明見解析;(2).
【解析】
(1)求得導(dǎo)數(shù),結(jié)合指數(shù)函數(shù)與余弦函數(shù)的性質(zhì),求得,即可得到結(jié)論.
(2)當(dāng)時,可得命題成立,當(dāng)時,設(shè),求得,求得函數(shù)的單調(diào)性,得到,分類討論,即可求解.
(1)由題意,函數(shù),可得,
由時,則,
當(dāng)時,,所以,
所以在上單調(diào)遞減.
(2)當(dāng)時,,對于,命題成立,
當(dāng)時,由(1),
設(shè),則,
因為,所以,在上單調(diào)遞增,
又, 所以,
所以在上單調(diào)遞增,且,
①當(dāng)時,,所以在上單調(diào)遞增,
因為,所以恒成立;
②當(dāng)時,,因為在上單調(diào)遞增,
又當(dāng)時,,
所以存在,對于,恒成立.
所以在上單調(diào)遞減,所以當(dāng)時,,不合題意.
綜上,當(dāng)時,對于,恒成立.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為實現(xiàn)2020年全面建設(shè)小康社會,某地進行產(chǎn)業(yè)的升級改造.經(jīng)市場調(diào)研和科學(xué)研判,準備大規(guī)模生產(chǎn)某高科技產(chǎn)品的一個核心部件,目前只有甲、乙兩種設(shè)備可以獨立生產(chǎn)該部件.如圖是從甲設(shè)備生產(chǎn)的部件中隨機抽取400件,對其核心部件的尺寸x,進行統(tǒng)計整理的頻率分布直方圖.
根據(jù)行業(yè)質(zhì)量標(biāo)準規(guī)定,該核心部件尺寸x滿足:|x﹣12|≤1為一級品,1<|x﹣12|≤2為二級品,|x﹣12|>2為三級品.
(Ⅰ)現(xiàn)根據(jù)頻率分布直方圖中的分組,用分層抽樣的方法先從這400件樣本中抽取40件產(chǎn)品,再從所抽取的40件產(chǎn)品中,抽取2件尺寸x∈[12,15]的產(chǎn)品,記ξ為這2件產(chǎn)品中尺寸x∈[14,15]的產(chǎn)品個數(shù),求ξ的分布列和數(shù)學(xué)期望;
(Ⅱ)將甲設(shè)備生產(chǎn)的產(chǎn)品成箱包裝出售時,需要進行檢驗.已知每箱有100件產(chǎn)品,每件產(chǎn)品的檢驗費用為50元.檢驗規(guī)定:若檢驗出三級品需更換為一級或二級品;若不檢驗,讓三級品進入買家,廠家需向買家每件支付200元補償.現(xiàn)從一箱產(chǎn)品中隨機抽檢了10件,結(jié)果發(fā)現(xiàn)有1件三級品.若將甲設(shè)備的樣本頻率作為總體的慨率,以廠家支付費用作為決策依據(jù),問是否對該箱中剩余產(chǎn)品進行一一檢驗?請說明理由;
(Ⅲ)為加大升級力度,廠家需增購設(shè)備.已知這種產(chǎn)品的利潤如下:一級品的利潤為500元/件;二級品的利潤為400元/件;三級品的利潤為200元/件.乙種設(shè)備產(chǎn)品中一、二、三級品的概率分別是,,.若將甲設(shè)備的樣本頻率作為總體的概率,以廠家的利潤作為決策依據(jù).應(yīng)選購哪種設(shè)備?請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,大擺錘是一種大型的游樂設(shè)備,常見于各大游樂園.游客坐在圓形的座艙中,面向外.通常,大擺錘以壓肩作為安全束縛,配以安全帶作為二次保險.座艙旋轉(zhuǎn)的同時,懸掛座艙的主軸在電機的驅(qū)動下做單擺運動.大擺錘的運行可以使置身其上的游客驚心動魄.今年元旦,小明去某游樂園玩“大擺錘”,他坐在點處,“大擺錘”啟動后,主軸在平面內(nèi)繞點左右擺動,平面與水平地面垂直,擺動的過程中,點在平面內(nèi)繞點作圓周運動,并且始終保持,,已知,在“大擺錘”啟動后,下列個結(jié)論中正確的是______(請?zhí)钌纤姓_結(jié)論的序號).
①點在某個定球面上運動;
②線段在水平地面上的正投影的長度為定值;
③直線與平面所成角的正弦值的最大值為;
④直線與平面所成角的正弦值的最大值為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知
(1)若a=1,且f(x)≥m在(0,+∞)恒成立,求實數(shù)m的取值范圍;
(2)當(dāng)時,若x=0不是f(x)的極值點,求實數(shù)a的取值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為.
(1)求曲線C的極坐標(biāo)方程和直線l的直角坐標(biāo)方程;
(2)若射線與曲線C交于點A(不同于極點O),與直線l交于點B,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(且),
(1)討論的奇偶性與單調(diào)性;
(2)求的反函數(shù);
(3)若,解關(guān)于x的不等式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某單位一輛交通車載有8個職工從單位出發(fā)送他們下班回家,途中共有甲、乙、丙3個停車點.如果某停車點無人下車,那么該車在這個點就不停車.假設(shè)每個職工在每個停車點下車的可能性都是相等的,求下列事件的概率:
(1)該車在某停車點停車;
(2)停車的次數(shù)不少于2次;
(3)恰好停車2次.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙、丙三臺機床各自獨立地加工同一種零件,已知甲機床加工的零件是一等品而乙機床加工的零件不是一等品的概率為,乙機床加工的零件是一等品而丙機床加工的零件不是一等品的概率為,甲、丙兩臺機床加工的零件都是一等品的概率為.
(1)分別求甲、乙、丙三臺機床各自加工的零件是一等品的概率;
(2)從甲、乙、丙加工的零件中各取一個檢驗,求至少有一個一等品的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】分別從集合和集合中各取兩個數(shù)字,問:
(1)可組成多少個四位數(shù)?
(2)可組成多少個四位偶數(shù)?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com