精英家教網 > 高中數學 > 題目詳情

【題目】通過隨機詢問200名性別不同的大學生是否愛好踢毽子運動,計算得到統(tǒng)計量的觀測值,參照附表,得到的正確結論是( )

0.10

0.05

0.025

2.706

3.841

5.024

A.97.5%以上的把握認為“愛好該項運動與性別有關”

B.97.5%以上的把握認為“愛好該項運動與性別無關”

C.在犯錯誤的概率不超過5%的前提下,認為“愛好該項運動與性別有關”

D.在犯錯誤的概率不超過5%的前提下,認為“愛好該項運動與性別無關”

【答案】C

【解析】

通過計算得到統(tǒng)計量值的觀測值,參照題目中的數值表,即可得出正確的結論.

解:∵計算得到統(tǒng)計量值的觀測值,

參照題目中的數值表,得到正確的結論是:

在犯錯誤的概率不超過5%的前提下,認為“愛好該運動與性別有關”.

故選:C.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,在直三棱柱中, 分別為、的中點, , .

(1)求證:平面平面;

(2)若直線和平面所成角的正弦值等于,求二面角的平面角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

(1)曲線在點處的切線方程為,求的值;

(2)若時,,都有,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圖的右頂點與拋物線的焦點重合,橢圓的離心率為,過橢圓的右焦點且垂直于軸的直線截拋物線所得的弦長為.

1)求橢圓和拋物線的方程;

2)過點的直線與橢圓交于,兩點,點關于軸的對稱點為.當直線繞點旋轉時,直線是否經過一定點?請判斷并證明你的結論.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在①,②,③這三個條件中任選一個,補充在下面問題中,并解答.

已知等差數列的公差為,等差數列的公差為.分別是數列的前項和,且 ,

1)求數列的通項公式;

2)設,求數列的前項和.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓與拋物線有共同的焦點,且兩曲線的公共點到的距離是它到直線 (點在此直線右側)的距離的一半.

1)求橢圓的方程;

2)設為坐標原點,直線過點且與橢圓交于兩點,以為鄰邊作平行四邊形.是否存在直線,使點落在橢圓或拋物線上?若存在,求出點坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】ABC的內角A,BC的對邊分別為a,bc,已知△ABC的面積為

(1)求sinBsinC;

(2)若6cosBcosC=1,a=3,求△ABC的周長.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,直線的參數方程為為參數),以坐標原點為極點,以軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為,直線與曲線相交于兩點,與軸相交于點.

(1)求直線的普通方程和曲線的直角坐標方程;

(2)求的值.

查看答案和解析>>

同步練習冊答案