利用基本不等式求最值,下列各式運用正確的是(  )
A、y=x+
4
x
≥2
x•
4
x
=4
B、y=sinx+
4
sinx
≥2
sinx•
4
sinx
=4(x為銳角)
C、y=3x+
4
3x
≥2
3x
4
3x
=4
D、y=lgx+4logx10≥2
lgx•4logx10
=4
考點:基本不等式
專題:不等式的解法及應(yīng)用
分析:A項中不滿足正數(shù)的條件,B項中取不到等號,D項中不滿足正數(shù)的條件.
解答: 解:A項中若x<0,則不等式不成立;
B項等號成立的條件時sin2x=4,故等號不可能成立.
C項解答過程正確.
D項若0<x<1,則不等式不成立.
故選C.
點評:本題主要考查了基本不等式的應(yīng)用.“一正,二定,三相等”的條件必須同時滿足.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

一個公比為2的等比數(shù)列的前5項的和為1,則其前10項的和為( 。
A、30B、31C、32D、33

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若拋物線x2=2py的焦點與橢圓
x2
3
+
y2
4
=1的下焦點重合,則p的值為(  )
A、4B、2C、-4D、-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列說法正確的是( 。
A、函數(shù)的極大值就是函數(shù)的最大值
B、函數(shù)的極小值就是函數(shù)的最小值
C、函數(shù)的最值一定是極值
D、在閉區(qū)間上的連續(xù)函數(shù)一定存在最值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若a<b<0,那么下列不等式中正確的是( 。
A、
1
a
1
b
B、
1
a
1
b
C、ab<b2
D、ab>a2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,若a=7,b=8,cosC=
13
14
,則c=( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:實數(shù)x滿足x2-4ax+3a2<0(其中a≠0),命題q:實數(shù)x滿足
x-3
x-2
≤0.
(1)若a=1,且p∧q為真,求實數(shù)x的取值范圍;
(2)若p是q的必要不充分條件,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線C1的參數(shù)方程為
x=t2+
1
t2
-2
y=t-
1
t
(t為參數(shù)),以坐標(biāo)原點為極點,x軸的正半軸為極軸,單位長度示變,建立極坐標(biāo)系,直線L的極坐標(biāo)方程為ρsin(θ+
π
4
)=
2

(Ⅰ)試求出曲線C1和直線L的普通方程;
(Ⅱ)求出它們的公共點的極坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l1的方向向量為
a
=(1,3),且過點A(-2,3),將直線x-2y-1=0繞著它與x軸的交點B按逆時針方向旋轉(zhuǎn)一個銳角α(tanα=
1
3
)得到直線l2,直線l3:(1-3k)x+(k+1)y-3k-1=0(k∈R).
(1)求直線l1和直線l2的方程;
(2)當(dāng)直線l1,l2,l3所圍成的三角形的面積為3時,求直線l3的方程.

查看答案和解析>>

同步練習(xí)冊答案