【題目】在棱長(zhǎng)為的正方體中,O是AC的中點(diǎn),E是線段D1O上一點(diǎn),且D1E=λEO.
(1)若λ=1,求異面直線DE與CD1所成角的余弦值;
(2)若平面CDE⊥平面CD1O,求λ的值.
【答案】(1)(2)λ=2
【解析】分析:以為單位正交基底建立如圖所示的空間直角坐標(biāo)系,寫出各點(diǎn)的坐標(biāo),
(1)求出異面直線 與1的方向向量用數(shù)量積公式兩線夾角的余弦值(或補(bǔ)角的余弦值)
(2)求出兩個(gè)平面的法向量,由于兩個(gè)平面垂直,故它們的法向量的內(nèi)積為0,由此方程求參數(shù)的值即可.
詳解:
(1)以為單位正交基底建立如圖所示的空間直角坐標(biāo)系.
則A(1,0,0),,,D1(0,0,1),
E,
于是,.
由cos==.
所以異面直線AE與CD1所成角的余弦值為.
(2)設(shè)平面CD1O的向量為m=(x1,y1,z1),由m·=0,m·=0
得 取x1=1,得y1=z1=1,即m=(1,1,1) . ………8分
由D1E=λEO,則E,=.10分
又設(shè)平面CDE的法向量為n=(x2,y2,z2),由n·=0,n·=0.
得 取x2=2,得z2=-λ,即n=(-2,0,λ) .12分
因?yàn)槠矫?/span>CDE⊥平面CD1F,所以m·n=0,得 .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分12分)袋中裝有黑色球和白色球共7個(gè),從中任取2個(gè)球都是白色球的概率為.現(xiàn)有甲、乙兩人從袋中輪流摸出1個(gè)球,甲先摸,乙后摸,然后甲再摸,……,摸后均不放回,直到有一人摸到白色球后終止.每個(gè)球在每一次被摸出的機(jī)會(huì)都是等可能的,用X表示摸球終止時(shí)所需摸球的次數(shù).
(1)求隨機(jī)變量X的分布列和均值E(X);
(2)求甲摸到白色球的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某超市隨機(jī)選取位顧客,記錄了他們購(gòu)買甲、乙、丙、丁四種商品的情況,整理成如下統(tǒng)計(jì)表,其中“√”表示購(gòu)買,“×”表示未購(gòu)買.
甲 | 乙 | 丙 | 丁 | |
√ | × | √ | √ | |
× | √ | × | √ | |
√ | √ | √ | × | |
√ | × | √ | × | |
85 | √ | × | × | × |
× | √ | × | × |
(Ⅰ)估計(jì)顧客同時(shí)購(gòu)買乙和丙的概率;
(Ⅱ)估計(jì)顧客在甲、乙、丙、丁中同時(shí)購(gòu)買中商品的概率;
(Ⅲ)如果顧客購(gòu)買了甲,則該顧客同時(shí)購(gòu)買乙、丙、丁中那種商品的可能性最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
()討論函數(shù)在定義域內(nèi)的極值點(diǎn)的個(gè)數(shù).
()若函數(shù)在處取得極值,且對(duì),恒成立,求實(shí)數(shù)的取值范圍.
()當(dāng)且時(shí),試比較與的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了鞏固全國(guó)文明城市創(chuàng)建成果,今年吉安市開展了拆除違章搭建鐵皮棚專項(xiàng)整治行為.為了了解市民對(duì)此項(xiàng)工作的“支持”與“反對(duì)”態(tài)度,隨機(jī)從存在違章搭建的戶主中抽取了男性、女性共名進(jìn)行調(diào)查,調(diào)查結(jié)果如下:
支持 | 反對(duì) | 合計(jì) | |
男性 | |||
女性 | |||
合計(jì) |
(1)根據(jù)以上數(shù)據(jù),判斷是否有的把握認(rèn)為對(duì)此項(xiàng)工作的“支持”與“反對(duì)”態(tài)度與“性別”有關(guān);
(2)現(xiàn)從參與調(diào)查的女戶主中按此項(xiàng)工作的“支持”與“反對(duì)”態(tài)度用分層抽樣的方法抽取人,從抽取的人中再隨機(jī)地抽取人贈(zèng)送小禮品,記這人中持“支持”態(tài)度的有人,求的分布列與數(shù)學(xué)期望.
參考公式:,其中.
參考數(shù)據(jù):
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圖像上有一最低點(diǎn),若圖像上各點(diǎn)縱坐標(biāo)不變,橫坐標(biāo)縮為原來的倍,再向左平移個(gè)單位得,又的所有根從小到大依次相差個(gè)單位,則的解析式為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線:()的焦點(diǎn)為,拋物線上存在一點(diǎn)到焦點(diǎn)的距離為3,且點(diǎn)在圓:上.
(Ⅰ)求拋物線的方程;
(Ⅱ)已知橢圓:()的一個(gè)焦點(diǎn)與拋物線的焦點(diǎn)重合,且離心率為.直線:交橢圓于,兩個(gè)不同的點(diǎn),若原點(diǎn)在以線段為直徑的圓的外部,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)列{an}滿足a1+a2+a3+…an=2n﹣an(n∈N+).?dāng)?shù)列{bn}滿足bn= ,則{bn}中的最大項(xiàng)的值是 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com