A. | (-∞,4) | B. | (-4,4] | C. | (-∞,-4)∪[2,+∞) | D. | [-4,2) |
分析 依題意,對于任意x≥2,當△x>0時,恒有f(x+△x)>f(x),說明函數(shù)f(x)在[2,+∞)上是單調(diào)遞增函數(shù),建立不等式關(guān)系可得答案.
解答 解:由題意,對于任意x≥2,當△x>0時,恒有f(x+△x)>f(x),
∴函數(shù)f(x)在[2,+∞)上是單調(diào)遞增函數(shù),
所以應(yīng)有$\left\{\begin{array}{l}{\frac{a}{2}≤2}\\{{2}^{2}-2a+3a>0}\end{array}\right.$,
解得-4<a≤4,即實數(shù)a的取值范圍是(-4,4].
故選B.
點評 本題結(jié)合對數(shù)函數(shù)的單調(diào)性,考查復合函數(shù)的單調(diào)性的求解,還考查了二次函數(shù)在區(qū)間上單調(diào).
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{4}{3}$ | B. | $\frac{3}{2}$ | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -4 | B. | 4 | C. | -2 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 若ab>bc,則a>c | B. | 若a3>b3,則a>b | ||
C. | 若a>b,c<0,則ac<bc | D. | 若$\sqrt{a}$<$\sqrt$,則a>b |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ${a_n}={({\frac{1}{2}})^n},{b_n}={({\frac{2}{3}})^n}$ | B. | ${a_n}={({\frac{1}{3}})^n},{b_n}=\frac{n}{{{n^2}+1}}$ | ||
C. | ${a_n}=\frac{n-1}{n},{b_n}=1+{({\frac{1}{3}})^n}$ | D. | ${a_n}=\frac{n+3}{n+2},{b_n}=\frac{n+2}{n+1}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{3}{2}$ | B. | $\frac{9}{4}$ | C. | 2 | D. | 4 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com