分析 (1)利用兩角和與差的三角函數(shù)化簡(jiǎn)函數(shù)的解析式,通過方程轉(zhuǎn)化求解cos2a.
(2)求出函數(shù)的導(dǎo)數(shù),切線的斜率,切點(diǎn)坐標(biāo),然后求解切線方程.
(3)利用三角函數(shù)的最值求得b,利用函數(shù)的單調(diào)區(qū)間求解實(shí)數(shù)a的最小值.
解答 解:(1)$f(x)=sin2x-\sqrt{3}cos2x=2sin({2x-\frac{π}{3}})$,…(1分)
∵$f(α)=\frac{1}{2}$,∴$sin({2α-\frac{π}{3}})=\frac{1}{4}$,
∵$α∈({\frac{5π}{12},\frac{2π}{3}})$,∴$2α-\frac{π}{3}∈({\frac{π}{2},π})$,
∴$cos({2α-\frac{π}{3}})=-\frac{{\sqrt{15}}}{4}$.…(3分)
∴$cos2α=cos({2α-\frac{π}{3}+\frac{π}{3}})=-\frac{{\sqrt{15}}}{4}×\frac{1}{2}-\frac{1}{4}×\frac{{\sqrt{3}}}{2}=-\frac{{\sqrt{3}+\sqrt{15}}}{8}$.…(4分)
(2)∵$f'(x)=4cos({2x-\frac{π}{3}})$,∴f'(0)=2,又$f(0)=-\sqrt{3}$,
∴所求切線方程為$y=2x-\sqrt{3}$…(7分)
(3)當(dāng)$x∈[{\frac{π}{4},\frac{π}{2}}]$時(shí),$2x-\frac{π}{3}∈[{\frac{π}{6},\frac{2π}{3}}]$,f(x)∈[1,2],
∴b=2.…(9分)
由$-\frac{π}{2}+2kπ≤2x-\frac{π}{3}≤\frac{π}{2}+2kπ$得$-\frac{π}{12}+kπ≤x≤\frac{5π}{12}+kπ({k∈Z})$.…(10分)
又函數(shù)f(x)在[aπ,2π](a<2)上單調(diào)遞增,
∴$[{aπ,2π}]⊆[{-\frac{π}{12}+2π,\frac{5π}{12}+2π}]$,
∴$-\frac{π}{12}+2π≤aπ≤2π$,
∴${a_{min}}=\frac{23}{12}$.…(12分)
點(diǎn)評(píng) 本題考查三角函數(shù)化簡(jiǎn)求值,切線方程的求法,三角函數(shù)的最值以及單調(diào)區(qū)間的應(yīng)用,考查轉(zhuǎn)化思想以及計(jì)算能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 不存在 | B. | 不能確定 | C. | 一個(gè) | D. | 兩個(gè) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3}{2}$ | B. | $-\frac{3}{2}$ | C. | $-\frac{3}{4}$ | D. | $\frac{4}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | ±1 | D. | ±2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com