(拓展深化)如圖所示,AB是⊙O的直徑,弦CD⊥AB于點(diǎn)P,CD=10 cm,AP∶PB=1∶5,求⊙O的半徑.
3 cm
【解析】
解 法一 連接OC,設(shè)AP=k cm,PB=5k (k>0) cm,
因?yàn)?/span>AB為⊙O直徑,所以半徑OC=AB= (AP+PB)=(k+5k)=3k,且OP=OA-PA=3k-k=2k.
因?yàn)?/span>AB垂直CD于P,
所以CP=CD=5 cm.
在Rt△COP中,
由勾股定理,
得OC2=PC2+PO2,
所以(3k)2=52+(2k)2,
即5k2=25,所以k=.
所以半徑OC=3k=3 (cm).
法二 設(shè)AP=k,PB=5k,
由相交弦定理:
CP·PD=AP·PB,
即2=k·5k.
∴k=,
∴==3,
即⊙O的半徑為3 cm.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第一章第1課時練習(xí)卷(解析版) 題型:解答題
已知集合A={y|y=-2x,x∈[2,3]},B={x|x2+3x-a2-3a>0}.若AB,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高中數(shù)學(xué)人教A版選修4-1達(dá)標(biāo)檢測第2講練習(xí)卷(解析版) 題型:選擇題
如圖,銳角三形ABC內(nèi)接于⊙O,∠ABC=60°,∠BAC=40°,作OE⊥AB交劣弧于點(diǎn)E,連接EC,則∠OEC=( ).
A.5° B.10°
C.15° D.20°
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高中數(shù)學(xué)人教A版選修4-1達(dá)標(biāo)檢測第1講練習(xí)卷(解析版) 題型:填空題
如圖,在△ABC中,M、N分別是AB、BC的中點(diǎn),AN、CM交于點(diǎn)O,那么△MON與△AOC面積的比是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高中數(shù)學(xué)人教A版選修4-1達(dá)標(biāo)檢測第1講練習(xí)卷(解析版) 題型:選擇題
如圖所示,P、Q分別在BC和AC上,BP∶CP=2∶5,CQ∶QA=3∶4,則等于
A.3∶14 B.14∶3
C.17∶3 D.17∶14
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高中數(shù)學(xué)人教A版選修4-1知能達(dá)標(biāo)2-5練習(xí)卷(解析版) 題型:填空題
如圖所示,PA、PB是⊙O的兩條切線,A、B為切點(diǎn),直線OP交⊙O于點(diǎn)D、E,交AB于點(diǎn)C,圖中互相垂直的線段有________⊥________.(只要求寫出一對線段)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高中數(shù)學(xué)人教A版選修4-1知能達(dá)標(biāo)2-4練習(xí)卷(解析版) 題型:解答題
如圖所示,已知四邊形ABCD內(nèi)接于⊙O,∠C=130°,AD是⊙O的直徑,過B作⊙O的切線FE,求∠ABE的度數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高中數(shù)學(xué)人教A版選修4-1知能達(dá)標(biāo)2-2練習(xí)卷(解析版) 題型:解答題
(拓展深化)如圖,已知△ABC中的兩條角平分線AD和CE相交于H,∠B=60°,F在AC上,且AE=AF.
(1)證明:B、D、H、E四點(diǎn)共圓;
(2)證明:CE平分∠DEF.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高中數(shù)學(xué)人教A版選修4-1知能達(dá)標(biāo)1-2練習(xí)卷(解析版) 題型:解答題
已知AD是△ABC的內(nèi)角平分線,求證:=.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com