【題目】已知函數(shù).

(1)討論的單調(diào)性;

(2)當(dāng)時(shí),函數(shù)的圖象恒在軸上方,求的最大值.

【答案】(1)當(dāng)時(shí),上單調(diào)遞增;當(dāng)時(shí),單調(diào)遞減,在單調(diào)遞增;(2)

【解析】

1)先對(duì)求導(dǎo),然后對(duì)進(jìn)行分類,分別討論的單調(diào)性;

2)方法一:對(duì)于的取值進(jìn)行分類:,考慮每種情況下對(duì)應(yīng)時(shí)的取值,由此確定的最大值;

方法二:對(duì)進(jìn)行分類,采用參變分離并分析新函數(shù)的最小值,由此得到的最大值.

(1)

當(dāng)時(shí),恒成立,上單調(diào)遞增,

當(dāng)時(shí),令,即,則 ,

當(dāng)時(shí),,單調(diào)遞減,

當(dāng)時(shí),單調(diào)遞增,

綜上所述:當(dāng)時(shí),上單調(diào)遞增.

當(dāng)時(shí) ,單調(diào)遞減,在單調(diào)遞增.

(2)方法一:由已知得,當(dāng) 時(shí),恒成立,

由(1)得,當(dāng)時(shí),上單調(diào)遞增,

,不合題意;

當(dāng)時(shí),

對(duì)于任意,故單調(diào)遞減;

對(duì)于任意,故單調(diào)遞增,

因此當(dāng)時(shí),有最小值為成立.

當(dāng)時(shí),

對(duì)于任意,故單調(diào)遞減,

因?yàn)?/span>恒成立,所以只需,即,

綜上,的最大值為

方法二:由題設(shè)知,當(dāng)時(shí),,

(1)當(dāng)時(shí),

設(shè),則,故單調(diào)遞減,

因此,的最小值大于,所以

(2)當(dāng)時(shí),成立.

(3)當(dāng)時(shí),,因?yàn)?/span>

所以當(dāng)時(shí),成立.

綜上,的最大值為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平行四邊形ABCD中,,,EAB的中點(diǎn)將沿直線DE折起到的位置,使平面平面BCDE

1)證明:平面PDE

2)設(shè)F為線段PC的中點(diǎn),求四面體D-PEF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓M(x1)2y2=1,圓N(x1)2y2=9,動(dòng)圓P與圓M外切并與圓N內(nèi)切,圓心P的軌跡為曲線 C

)求C的方程;

l是與圓P,圓M都相切的一條直線,l與曲線C交于A,B兩點(diǎn),當(dāng)圓P的半徑最長(zhǎng)時(shí),求|AB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知某射擊運(yùn)動(dòng)員,每次擊中目標(biāo)的概率都是0.8.現(xiàn)采用隨機(jī)模擬的方法估計(jì)該運(yùn)動(dòng)員射擊4次至少擊中3次的概率:先由計(jì)算器算出09之間取整數(shù)值的隨機(jī)數(shù),指定0,1表示沒(méi)有擊中目標(biāo),2,3,4,5,6,7,8,9表示擊中目標(biāo);因?yàn)樯鋼?/span>4,故以每4個(gè)隨機(jī)數(shù)為一組,代表射擊4次的結(jié)果.經(jīng)隨機(jī)模擬產(chǎn)生了如下20組隨機(jī)數(shù):

5727 0293 7140 9857 0347

4373 8636 9647 1417 4698

0371 6233 2616 8045 6011

3661 9597 7424 6710 4281

據(jù)此估計(jì),該射擊運(yùn)動(dòng)員射擊4次至少擊中3次的概率為_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在三棱柱中,平面是線段上的動(dòng)點(diǎn),是線段上的中點(diǎn).

(Ⅰ)證明:;

(Ⅱ)若,且直線所成角的余弦值為,試指出點(diǎn)在線段上的位置,并求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),以O為圓心的圓與直線相切.

(1)求圓O的方程.

(2)直線與圓O交于A,B兩點(diǎn),在圓O上是否存在一點(diǎn)M,使得四邊形為菱形?若存在,求出此時(shí)直線l的斜率;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在對(duì)人們的休閑方式的一次調(diào)查中,共調(diào)查了124人,其中女性70人,男性54.女性中有43人主要的休閑方式是看電視,另外27人主要的休閑方式是運(yùn)動(dòng);男性中有21人主要的休閑方式是看電視,另外33人主要的休閑方式是運(yùn)動(dòng).

1)根據(jù)以上數(shù)據(jù)建立一個(gè)2×2的列聯(lián)表;并估計(jì),以運(yùn)動(dòng)為主的休閑方式的人的比例;

2)能否在犯錯(cuò)誤的概率不超過(guò)0.025的前提下,認(rèn)為性別與休閑方式有關(guān)系?

附表:

PK2k0

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

K2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于的方程上恰有3個(gè)解,存在,使不等式成立.

(1)若為真命題,求正數(shù)的取值范圍;

(2)若為真命題,且為假命題,求正數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某廠家擬在2020年舉行促銷活動(dòng),經(jīng)調(diào)查測(cè)算,某產(chǎn)品的年銷售量(即該廠的年產(chǎn)量)萬(wàn)件與年促銷費(fèi)用萬(wàn)元,滿足為常數(shù)),如果不搞促銷活動(dòng),則該產(chǎn)品的年銷售量只能是1萬(wàn)件,已知2020年生產(chǎn)該產(chǎn)品的固定投入為8萬(wàn)元,每生產(chǎn)1萬(wàn)件,該產(chǎn)品需要再投入16萬(wàn)元,廠家將每件產(chǎn)品的銷售價(jià)格定為每件產(chǎn)品年平均成本的1.5倍(產(chǎn)品成本包括固定投入和再投入兩部分資金).

1)將2020年該產(chǎn)品的利潤(rùn)(萬(wàn)元)表示為年促銷費(fèi)用(萬(wàn)元)的函數(shù);

2)該廠家2020年的促銷費(fèi)用投入多少萬(wàn)元時(shí),廠家的利潤(rùn)最大?

查看答案和解析>>

同步練習(xí)冊(cè)答案