定義函數(shù)(為定義域)圖像上的點(diǎn)到坐標(biāo)原點(diǎn)的距離為函數(shù)的的模.若模存在最大值,則稱(chēng)之為函數(shù)的長(zhǎng)距;若模存在最小值,則稱(chēng)之為函數(shù)的短距.
(1)分別判斷函數(shù)是否存在長(zhǎng)距與短距,若存在,請(qǐng)求出;
(2)求證:指數(shù)函數(shù)的短距小于1;
(3)對(duì)于任意是否存在實(shí)數(shù),使得函數(shù)的短距不小于2,若存在,請(qǐng)求出的取值范圍;不存在,則說(shuō)明理由?

(1)短距為,長(zhǎng)距不存在,短距為,長(zhǎng)距為5;(2)證明見(jiàn)解析;(3).

解析試題分析:本題屬于新定義概念,問(wèn)題的實(shí)質(zhì)是求函數(shù)圖象上的點(diǎn)到原點(diǎn)的距離的最大值和最小值(如有的話(huà)),正面討論時(shí)我們把距離表示為的函數(shù).(1)對(duì),(當(dāng)且僅當(dāng)時(shí)等號(hào)成立),因此存在短距為,不存在長(zhǎng)距,對(duì),
,,即有最大值也有最小值,因此短距和長(zhǎng)距都有;(2)對(duì)函數(shù),由于,因此短距不大于1,令,則有,故當(dāng)時(shí),存在使得 ,當(dāng)時(shí),存在使得 ,即證;(3)記,按題意條件,則有不等式對(duì)恒成立,這類(lèi)不等式恒成立求參數(shù)取值范圍問(wèn)題,我們可采取分離參數(shù)法,轉(zhuǎn)化為求函數(shù)的最值,按分別討論,由此可求得的范圍.
(1)設(shè)(當(dāng)且僅當(dāng)取得等號(hào))+2分
短距為,長(zhǎng)距不存在。    +4分
(2)設(shè)   +6分
        +8分
短距為,長(zhǎng)距為5。    +9分
(3)設(shè) 函數(shù)的短距不小于2
對(duì)于始終成立:+10分
當(dāng)時(shí):對(duì)于始終成立    +12分
當(dāng)時(shí):取即可知顯然不成立           +13分
當(dāng)時(shí):對(duì)于始終成立      +15分
綜上     +16分
考點(diǎn):新定義概念,函數(shù)的最大值與最小值,不等式恒成立問(wèn)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

函數(shù)
(1)若在其定義域內(nèi)是增函數(shù),求b的取值范圍;
(2)若,若函數(shù)在 [1,3]上恰有兩個(gè)不同零點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知f(x)=(x≠a).
(1)若a=-2,試證明f(x)在(-∞,-2)內(nèi)單調(diào)遞增;
(2)若a>0且f(x)在(1,+∞)內(nèi)單調(diào)遞減,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

關(guān)于x的二次方程x2+(m-1)x+1=0在區(qū)間[0,2]上有解,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(13分)(2011•湖北)設(shè)函數(shù)f(x)=x3+2ax2+bx+a,g(x)=x2﹣3x+2,其中x∈R,a、b為常數(shù),已知曲線(xiàn)y=f(x)與y=g(x)在點(diǎn)(2,0)處有相同的切線(xiàn)l.
(Ⅰ) 求a、b的值,并寫(xiě)出切線(xiàn)l的方程;
(Ⅱ)若方程f(x)+g(x)=mx有三個(gè)互不相同的實(shí)根0、x1、x2,其中x1<x2,且對(duì)任意的x∈[x1,x2],f(x)+g(x)<m(x﹣1)恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿(mǎn)分12分)設(shè)A>0,A≠1,函數(shù)有最大值,
求函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)函數(shù),其中,為正整數(shù),,均為常數(shù),曲線(xiàn)處的切線(xiàn)方程為.
(1)求,,的值;     
(2)求函數(shù)的最大值;
(3)證明:對(duì)任意的都有.(為自然對(duì)數(shù)的底)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè),用表示當(dāng)時(shí)的函數(shù)值中整數(shù)值的個(gè)數(shù).
(1)求的表達(dá)式.
(2)設(shè),求.
(3)設(shè),若,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

若直線(xiàn)y=2a與函數(shù)y=|ax-1|(a>0且a≠1)的圖象有兩個(gè)公共點(diǎn),求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案