【題目】如圖,四棱錐的底面是邊長(zhǎng)為2的正方形,垂直于底面,.
(1)求證;
(2)求平面與平面所成二面角的大。
(3)設(shè)棱的中點(diǎn)為,求異面直線與所成角的大小.
【答案】(1)證明見(jiàn)詳解;(2);(3)
【解析】
(1)先證面,從而得到;
(2)由(1)中的線面垂直,可知所求二面角的平面角為,利用為等腰直角三角形,可求的大;
(3)取中點(diǎn),連接,從而或其補(bǔ)角是異面直線與所成角,分別計(jì)算的長(zhǎng)度后可得,從而得到:.
解:(1)證明:底面是正方形,,
底面,底面,
,
又,面,
面,
;
(2)由(1)知,又,
為所求二面角的平面角,
在中,由可知,是等腰直角三角形,
,
即平面與平面所成二面角為;
(3)取中點(diǎn),連接,
在中,由中位線定理得,
或其補(bǔ)角是異面直線與所成角,
,,
又,
,
在中,有,
,即異面直線與所成角為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}滿足a1=2,an+1=2(Sn+n+1)(n∈N*),令bn=an+1.
(1)求數(shù)列{bn}的通項(xiàng)公式;
(2)證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn),,在圓E上,過(guò)點(diǎn)的直線l與圓E相切.
Ⅰ求圓E的方程;
Ⅱ求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,網(wǎng)格紙上小正方形的邊長(zhǎng)為1,粗實(shí)線和虛線畫(huà)出的是某幾何體的三視圖,則該幾何休的表面積為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】1996年嘉祥被國(guó)家命名為“中國(guó)石雕之鄉(xiāng)”,2008年6月,嘉祥石雕登上了國(guó)家文化部公布的“第二批國(guó)家級(jí)非物質(zhì)文化遺產(chǎn)名錄”,嘉祥石雕文化產(chǎn)業(yè)園被國(guó)家文化部命名為“國(guó)家級(jí)文化產(chǎn)業(yè)示范基地”,近年來(lái),嘉祥石雕產(chǎn)業(yè)發(fā)展十分迅猛,產(chǎn)品暢銷(xiāo)全國(guó)各地及美國(guó)、日本、東南亞國(guó)家和地區(qū),嘉祥某石雕廠為嚴(yán)把質(zhì)量關(guān),對(duì)制作的每件石雕都請(qǐng)3位行家進(jìn)行質(zhì)量把關(guān),質(zhì)量把關(guān)程序如下:(i)若一件石雕3位行家都認(rèn)為質(zhì)量過(guò)關(guān),則該石雕質(zhì)量為優(yōu)秀級(jí);(ii)若僅有1位行家認(rèn)為質(zhì)量不過(guò)關(guān),再由另外2位行家進(jìn)行第二次質(zhì)量把關(guān),若第二次質(zhì)量把關(guān)這2位行家都認(rèn)為質(zhì)量過(guò)關(guān),則該石雕質(zhì)量為良好級(jí),若第二次質(zhì)量把關(guān)這2位行家中有1位或2位認(rèn)為質(zhì)量不過(guò)關(guān),則該石雕需返工重做.已知每一次質(zhì)量把關(guān)中一件石雕被1位行家認(rèn)為質(zhì)量不過(guò)關(guān)的概率均為,且每1位行家認(rèn)為石雕質(zhì)量是否過(guò)關(guān)相互獨(dú)立.則一件石雕質(zhì)量為優(yōu)秀級(jí)的概率為______ ;一件石雕質(zhì)量為良好級(jí)的概率為______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,,為,軸上兩個(gè)動(dòng)點(diǎn),點(diǎn)在直線上,且滿足,.
(1)求點(diǎn)的軌跡方程;
(2)記點(diǎn)的軌跡為曲線,為曲線與正半軸的交點(diǎn),、為曲線上與不重合的兩點(diǎn),且直線與直線的斜率之積為,試探究面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是一個(gè)纜車(chē)示意圖,該纜車(chē)的半徑為4.8 m,圓上最低點(diǎn)與地面的距離為0.8 m,纜車(chē)每60 s轉(zhuǎn)動(dòng)一圈,圖中OA與地面垂直,以O(shè)A為始邊,逆時(shí)針轉(zhuǎn)動(dòng)θ角到OB,設(shè)B點(diǎn)與地面的距離為h m.
(1)求h與θ之間的函數(shù)解析式;
(2)設(shè)從OA開(kāi)始轉(zhuǎn)動(dòng),經(jīng)過(guò)t s達(dá)到OB,求h與t之間的函數(shù)解析式,并計(jì)算經(jīng)過(guò)45 s后纜車(chē)距離地面的高度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】半期考試后,班長(zhǎng)小王統(tǒng)計(jì)了50名同學(xué)的數(shù)學(xué)成績(jī),繪制頻率分布直方圖如圖所示.
根據(jù)頻率分布直方圖,估計(jì)這50名同學(xué)的數(shù)學(xué)平均成績(jī);
用分層抽樣的方法從成績(jī)低于115的同學(xué)中抽取6名,再在抽取的這6名同學(xué)中任選2名,求這兩名同學(xué)數(shù)學(xué)成績(jī)均在中的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com