【題目】如圖所示,網(wǎng)格紙上小正方形的邊長為1,粗實(shí)線和虛線畫出的是某幾何體的三視圖,則該幾何休的表面積為( )

A. B. C. D.

【答案】D

【解析】由三視圖知,該幾何體是一個(gè)棱長為2的正方體挖去一個(gè)圓錐,其表面積為,故選D.

點(diǎn)睛:思考三視圖還原空間幾何體首先應(yīng)深刻理解三視圖之間的關(guān)系,遵循“長對(duì)正,高平齊,寬相等”的基本原則,其內(nèi)涵為正視圖的高是幾何體的高,長是幾何體的長;俯視圖的長是幾何體的長,寬是幾何體的寬;側(cè)視圖的高是幾何體的高,寬是幾何體的寬.由三視圖畫出直觀圖的步驟和思考方法:1、首先看俯視圖,根據(jù)俯視圖畫出幾何體地面的直觀圖;2、觀察正視圖和側(cè)視圖找到幾何體前、后、左、右的高度;3、畫出整體,然后再根據(jù)三視圖進(jìn)行調(diào)整.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】釣魚島及其附屬島嶼是中國固有領(lǐng)土,如圖:點(diǎn)A、B、C分別表示釣魚島、南小島、黃尾嶼,點(diǎn)C在點(diǎn)A的北偏東47°方向,點(diǎn)B在點(diǎn)C的南偏西36°方向,點(diǎn)B在點(diǎn)A的南偏東79°方向,且AB兩點(diǎn)的距離約為3海里.

1)求A、C兩點(diǎn)間的距離;(精確到0.01

2)某一時(shí)刻,我國一漁船在A點(diǎn)處因故障拋錨發(fā)出求救信號(hào).一艘R國艦艇正從點(diǎn)C正東10海里的點(diǎn)P處以18海里/小時(shí)的速度接近漁船,其航線為PCA(直線行進(jìn)),而我東海某漁政船正位于點(diǎn)A南偏西60°方向20海里的點(diǎn)Q處,收到信號(hào)后趕往救助,其航線為先向正北航行8海里至點(diǎn)M處,再折向點(diǎn)A直線航行,航速為22海里/小時(shí).漁政船能否先于R國艦艇趕到進(jìn)行救助?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知各項(xiàng)均不相等的等差數(shù)列的前五項(xiàng)和,且成等比數(shù)列.

1)求數(shù)列的通項(xiàng)公式;

2)若為數(shù)列的前項(xiàng)和,且存在,使得成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,直三棱柱中,,,分別為的中點(diǎn).

1)證明:平面;

2)已知與平面所成的角為30°,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地區(qū)積極發(fā)展電商,通過近些年工作的開展在新農(nóng)村建設(shè)和扶貧過程中起到了非常重要的作用,促進(jìn)了農(nóng)民生活富裕,為了更好地了解本地區(qū)某一特色產(chǎn)品的宣傳費(fèi) (千元)對(duì)銷量 (千件)的影響,統(tǒng)計(jì)了近六年的數(shù)據(jù)如下:

(1)若近6年的宣傳費(fèi)與銷量呈線性分布,由前5年數(shù)據(jù)求線性回歸直線方程,并寫出的預(yù)測值;

(2)若利潤與宣傳費(fèi)的比值不低于20的年份稱為“吉祥年”,在這6個(gè)年份中任意選2個(gè)年份,求這2個(gè)年份均為“吉祥年”的概率

附:回歸方程的斜率與截距的最小二乘法估計(jì)分別為,

,其中, , 的平均數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】滕州市教育局為了解學(xué)生網(wǎng)絡(luò)教學(xué)期間的學(xué)習(xí)情況,從初中及高中共抽取了50名學(xué)生,對(duì)他們每天平均學(xué)習(xí)時(shí)間進(jìn)行統(tǒng)計(jì).請(qǐng)根據(jù)下面的各班人數(shù)統(tǒng)計(jì)表和學(xué)習(xí)時(shí)間的頻率分布直方圖解決下列問題:

年級(jí)

人數(shù)

初一

4

初二

4

初三

6

高一

12

高二

6

高三

18

合計(jì)

50

1)抽查的50人中,每天平均學(xué)習(xí)時(shí)間為68小時(shí)的人數(shù)有多少?

2)經(jīng)調(diào)查,每天平均學(xué)習(xí)時(shí)間不少于6小時(shí)的學(xué)生均來自高中.現(xiàn)采用分層抽樣的方法,從學(xué)習(xí)時(shí)間不少于6小時(shí)的學(xué)生中隨機(jī)抽取6名學(xué)生進(jìn)行問卷調(diào)查,求這三個(gè)年級(jí)各抽取了多少名學(xué)生;

3)在(2)抽取的6名學(xué)生中隨機(jī)選取2人進(jìn)行訪談,求這2名學(xué)生來自不同年級(jí)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐的底面是邊長為2的正方形,垂直于底面,.

1)求證; 

2)求平面與平面所成二面角的大小;

3)設(shè)棱的中點(diǎn)為,求異面直線所成角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù).

(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;

(2)求函數(shù)的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C的中心在原點(diǎn),焦點(diǎn)在x軸上,短軸長為,離心率為

求橢圓C的方程;

若過點(diǎn)的直線與橢圓C交于AB兩點(diǎn),且P點(diǎn)平分線段AB,求直線AB的方程;

一條動(dòng)直線l與橢圓C交于不同兩點(diǎn)M,N,O為坐標(biāo)原點(diǎn),的面積為求證:為定值.

查看答案和解析>>

同步練習(xí)冊(cè)答案