【題目】已知橢圓經(jīng)過點(diǎn),,點(diǎn)為橢圓的右頂點(diǎn),直線與橢圓相交于不同于點(diǎn)的兩個(gè)點(diǎn)、.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)當(dāng)時(shí),求面積的最大值;
(3)若,求證:為定值.
【答案】(1);(2);(3)證明見解析
【解析】
(1)求出后可得橢圓的標(biāo)準(zhǔn)方程.
(2)設(shè)直線,求出的坐標(biāo)后可用表示,利用雙勾函數(shù)的性質(zhì)可求其最大值.
(3)令,,則可得,利用同角的三角函數(shù)的基本關(guān)系式可證為定值5.
(1)由題設(shè)有,故,所以橢圓的標(biāo)準(zhǔn)方程為.
(2)直線的斜率必存在,設(shè)直線,
由可得,
故即,故,
同理,.
所以
,
令,則,則,且令,
任意的,,
因?yàn)?/span>,所以即,
所以為增函數(shù),所以,
當(dāng)且僅當(dāng)時(shí)等號成立,故的最大值為.
(3)設(shè),,
所以即為,而,所以,
故即.
又
,
故為定值5.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( 。
A.若,則的逆命題是真命題
B.若,則的逆否命題為假命題
C.的否定是
D.若且為假命題,則和均為假命題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在多面體中,底面為菱形,,,平面,,.
(1)若點(diǎn),分別在,上,且,,證明平面.
(2)若平面平面,求平面把多面體分成大、小兩部分的體積比.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中真命題是( )
(1)在的二項(xiàng)式展開式中,共有項(xiàng)有理項(xiàng);
(2)若事件、滿足,,,則事件、是相互獨(dú)立事件;
(3)根據(jù)最近天某醫(yī)院新增疑似病例數(shù)據(jù),“總體均值為,總體方差為”,可以推測“最近天,該醫(yī)院每天新增疑似病例不超過人”.
A.(1)(2)B.(1)(3)C.(2)(3)D.(1)(2)(3)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)當(dāng)時(shí),證明:在區(qū)間上是增函數(shù);
(2)當(dāng),函數(shù)的零點(diǎn)個(gè)數(shù),并說明理由;
(3)求函數(shù)的對稱中心,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(是非零實(shí)常數(shù))滿足且方程有且僅有一個(gè)實(shí)數(shù)解.
(1)求的值
(2)當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍
(3)在直角坐標(biāo)系中,求定點(diǎn)到函數(shù)圖像上的任意一點(diǎn)的距離的最小值,并求取得最小值時(shí)的值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線(為參數(shù)),將曲線上的所有點(diǎn)的橫坐標(biāo)保持不變,縱坐標(biāo)縮短為原來的后得到曲線;以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.
(1)求曲線和直線的直角坐標(biāo)方程;
(2)已知,設(shè)直線與曲線交于不同的、兩點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)分別為、.經(jīng)過點(diǎn)且傾斜角為的直線與橢圓交于、兩點(diǎn)(其中點(diǎn)在軸上方),的周長為8.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)如圖,把平面沿軸折起來,使軸正半軸和軸確定的半平面,與負(fù)半軸和軸所確定的半平面互相垂直.
①若,求異面直線和所成角的大。
②若折疊后的周長為,求的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)滿足:對于任意正數(shù),都有,且,則稱函數(shù)為“L函數(shù)”.
(1)試判斷函數(shù)與是否是“L函數(shù)”;
(2)若函數(shù)為“L函數(shù)”,求實(shí)數(shù)a的取值范圍;
(3)若函數(shù)為“L函數(shù)”,且,求證:對任意,都有.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com