【題目】設(shè)函數(shù).

1)當時,證明:在區(qū)間上是增函數(shù);

2)當,函數(shù)的零點個數(shù),并說明理由;

3)求函數(shù)的對稱中心,并說明理由.

【答案】1)證明見解析;(2,理由見解析;(3.

【解析】

1)化簡函數(shù)的解析式,根據(jù)單調(diào)性的定義可證明出函數(shù)在區(qū)間上是增函數(shù);

2)判斷函數(shù)在各區(qū)間的單調(diào)性,從而得出結(jié)論;

3)將函數(shù)進行平移變換構(gòu)造一個奇函數(shù)即可得出對稱中心.

1)當時,,

任取,即,

,,,.

,,則,即,

因此,函數(shù)在區(qū)間上為增函數(shù);

2)當時,

顯然當時,函數(shù)為增函數(shù),其中、、,

時,,當時,,

所以,函數(shù)在區(qū)間上有且只有一個零點;

又當時,,

時,

所以,函數(shù)上沒有零點,

因此,函數(shù)共有個零點;

3,

構(gòu)造函數(shù),

可知,函數(shù)的定義域為,關(guān)于原點對稱,

所以,函數(shù)為奇函數(shù),其對稱中心為坐標原點,

且有,

為了得到函數(shù)的圖象,可將函數(shù)的圖象向上平移個單位長度,向左平移個單位長度即可.

因此,函數(shù)圖象的對稱中心坐標為.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)aR,函數(shù)f(x)=x|x-a|-a.

(1) f(x)為奇函數(shù),求a的值;

(2) 若對任意的x[2,3],f(x)≥0恒成立,求a的取值范圍;

(3) a>4時,求函數(shù)y=f(f(x)+a)零點的個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一種作圖工具如圖1所示.是滑槽的中點,短桿可繞轉(zhuǎn)動,長桿通過處鉸鏈與連接,上的栓子可沿滑槽AB滑動,且,.當栓子在滑槽AB內(nèi)作往復(fù)運動時,帶動轉(zhuǎn)動一周(不動時,也不動),處的筆尖畫出的曲線記為.以為原點,所在的直線為軸建立如圖2所示的平面直角坐標系.

)求曲線C的方程;

)設(shè)動直線與兩定直線分別交于兩點.若直線總與曲線有且只有一個公共點,試探究:的面積是否存在最小值?若存在,求出該最小值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】201911日新修訂的個稅法正式實施,規(guī)定:公民全月工資、薪金所得不超過5000元的部分不必納稅,超過5000元的部分為全月應(yīng)納稅所得額.此項稅款按下表分段累計計算(預(yù)扣):

全月應(yīng)繳納所得額

稅率

不超過3000元的部分

超過3000元至12000元的部分

超過12000元至25000元的部分

國家在實施新個稅時,考慮到納稅人的實際情況,實施了《個人所得稅稅前專項附加扣稅暫行辦法》,具體如下表:

項目

每月稅前抵扣金額(元)

說明

子女教育

1000

一年按12月計算,可扣12000

繼續(xù)教育

400

一年可扣除4800元,若是進行技能職業(yè)教育或者專業(yè)技術(shù)職業(yè)資格教育一年可扣除3600

大病醫(yī)療

5000

一年最高抵扣金額為60000

住房貸款利息

1000

一年可扣除12000元,若夫妻雙方在同一城市工作,可以選擇一方來扣除

住房租金

1500/1000/800

扣除金額需要根據(jù)城市而定

贍養(yǎng)老人

2000

一年可扣除24000元,若不是獨生子女,子女平均扣除.贍養(yǎng)老人年齡需要在60周歲及以上

老李本人為獨生子女,家里有70歲的老人需要贍養(yǎng),有一個女兒正讀高三,他每月還需繳納住房貸款2734.201911月老李工資,薪金所得為20000元,按照《個人所得稅稅前專項附加扣稅暫行辦法》,則老李應(yīng)繳納稅款(預(yù)扣)為______.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,定義為兩點、的“切比雪夫距離”,又設(shè)點上任意一點,稱的最小值為點到直線的“切比雪夫距離”,記作,給出四個命題,正確的是________.

①對任意三點、,都有;

到原點的“切比雪夫距離”等于的點的軌跡是正方形;

已知點和直線,則;

定點,動點滿足,則點的軌跡與直線為常數(shù))有且僅有個公共點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓經(jīng)過點,點為橢圓的右頂點,直線與橢圓相交于不同于點的兩個點、.

1)求橢圓的標準方程;

2)當時,求面積的最大值;

3)若,求證:為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】太極圖被稱為“中華第一圖”.從孔廟大成殿梁柱,到樓觀臺、三茅宮標記物;從道袍、卦攤、中醫(yī)、氣功、武術(shù)到韓國國旗,太極圖無不躍居其上.這種廣為人知的太極圖,其形狀如陰陽兩魚互抱在一起,因而被稱為“陰陽魚太極圖”.在如圖所示的陰陽魚圖案中,陰影部分可表示為,設(shè)點,則的最大值與最小值之差是(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某租車公司給出的財務(wù)報表如下:

年度

項目

2014

1-12月)

2015

1-12月)

2016

1-11月)

接單量(單)

14463272

40125125

60331996

油費(元)

214301962

581305364

653214963

平均每單油費(元)

14.82

14.49

平均每單里程(公里)

15

15

每公里油耗(元)

0.7

0.7

0.7

有投資者在研究上述報表時,發(fā)現(xiàn)租車公司有空駛情況,并給出空駛率的計算公式為.

1)分別計算20142015年該公司的空駛率的值(精確到0.01%);

22016年該公司加強了流程管理,利用租車軟件,降低了空駛率并提高了平均每單里程,核算截止到1130日,空駛率在2015年的基礎(chǔ)上降低了20個百分點,問2016年前11個月的平均每單油費和平均每單里程分別為多少?(分別精確到0.01元和0.01公里).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】太極圖是由黑白兩個魚形紋組成的圖案,俗稱陰陽魚,太極圖展現(xiàn)了一種相互轉(zhuǎn)化,相對統(tǒng)一的和諧美,定義:能夠?qū)A的周長和面積同時等分成兩個部分的函數(shù)稱為圓的一個太極函數(shù),則下列有關(guān)說法中:

①對于圓的所有非常數(shù)函數(shù)的太極函數(shù)中,都不能為偶函數(shù);

②函數(shù)是圓的一個太極函數(shù);

③直線所對應(yīng)的函數(shù)一定是圓的太極函數(shù);

④若函數(shù)是圓的太極函數(shù),則

所有正確的是__________

查看答案和解析>>

同步練習冊答案