函數(shù)f(x)=(
1
2
 -x2-2x+1的單調(diào)區(qū)間為
 
考點(diǎn):復(fù)合函數(shù)的單調(diào)性
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:令t=-x2-2x+1,則f(x)=(
1
2
)
t
,則函數(shù)t的單調(diào)性和函數(shù)f(x)=(
1
2
)
t
的單調(diào)性相反.利用二次函數(shù)的性質(zhì)可得函數(shù)t=-(x+1)2+2 的單調(diào)區(qū)間,可得f(x)的單調(diào)區(qū)間.
解答: 解:令t=-x2-2x+1,則f(x)=g(t)=(
1
2
)
t
,根據(jù)復(fù)合函數(shù)的單調(diào)性,函數(shù)t=-x2-2x+1的單調(diào)性和函數(shù)f(x)=(
1
2
)
t
的單調(diào)性相反.
利用二次函數(shù)的性質(zhì)可得函數(shù)t=-x2-2x+1=-(x+1)2+2 的增區(qū)間為(-∞,-1),減區(qū)間為[-1,+∞),
故函數(shù)f(x)的減區(qū)間為(-∞,-1),增區(qū)間為[-1,+∞),
故答案為:減區(qū)間為(-∞,-1),增區(qū)間為[-1,+∞).
點(diǎn)評(píng):本題主要考查復(fù)合函數(shù)的單調(diào)性,二次函數(shù)的性質(zhì),體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知公差不為零的等差數(shù)列{an},等比數(shù)列{bn},滿足b1=a1+1=2,b2=a2+1,b3=a4+1.
(Ⅰ)求數(shù)列{an}、{bn}的通項(xiàng)公式;
(Ⅱ)若cn=an•bn,求數(shù)列{cn}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率e=
2
2
,過右焦點(diǎn)F且與x軸垂直的直線交橢圓于A,B兩點(diǎn),且|AB|=
2

(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)直線l:y=kx+t(t≠0)與橢圓C相交于M,N兩點(diǎn),直線AO平分線段MN,求△OMN的面積的最大值及此時(shí)直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計(jì)算:
x+y
x
1
3
+y
1
3
-
x
4
3
-y
4
3
x
2
3
-y
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x(x>0),求f(f(x-1))的定義域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)的圖象關(guān)于y軸對(duì)稱,函數(shù)g(x)的圖象關(guān)于原點(diǎn)對(duì)稱,且f(x)+g(x)=10x,則f(x)=
 
,g(x)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=x3-x2+x+1在點(diǎn)(1,2)處的切線與函數(shù)g(x)=x2-x圍成的圖形的面積等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

化簡(jiǎn):
tan(
π
4
+α)cos2α
2cos2(
π
4
-α)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等差數(shù)列{an}中,
(1)若a1+a2+a3+a5+a8+a9+a14=7m,且m=at,則t=
 
;
(2)若a32+2a3a6+a5a7=12,則a4a5=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案