精英家教網 > 高中數學 > 題目詳情

【題目】在棱長為1的正方體ABCDA1B1C1D1中,E為棱BC的中點,點F是棱CD上的動點,試確定點F的位置,使得D1E⊥平面AB1F.

【答案】解:如圖建立空間直角坐標系:
則A(1,0,0),B1(1,1,1),
D1(0,0,1),E( ,1,0).
設F(0,y,0),則 =(0,1,1),
=(﹣1,y,0), =( ,1,﹣1),
要使D1E⊥平面AB1F,
只需: ,
即: ,
即:y=
∴當F為CD中點時,有D1E⊥平面AB1F.

【解析】建立空間直角坐標系,表示出直線D1E所在的向量與AF,AB1所在的向量,利用線面垂直關系得到向量的數量積為0,進而得到答案.
【考點精析】關于本題考查的直線與平面垂直的性質,需要了解垂直于同一個平面的兩條直線平行才能得出正確答案.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,已知圓經過橢圓的焦點.

1)求橢圓的標準方程;

2)設直線交橢圓兩點,為弦的中點,,記直線的斜率分別為,當時,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設定義在R上的偶函數f(x),滿足對任意x∈R都有f(t)=f(2﹣t)且x∈(0,1]時,f(x)= ,a=f( ),b=f( ),c=f( ),用“<“表示a,b,c的大小關系是

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某中學隨機選取了名男生,將他們的身高作為樣本進行統(tǒng)計,得到如圖所示的頻率分布直方圖.觀察圖中數據,完成下列問題.

(Ⅰ)求的值及樣本中男生身高在(單位: )的人數;

假設同一組中的每個數據可用該組區(qū)間的中點值代替,通過樣本估計該校全體男生的平均身高;

(Ⅲ)在樣本中,從身高在(單位: )內的男生中任選兩人,求這兩人的身高都不低于的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數fx=|2x+ |+a|x |

)當a=﹣1時,解不等式fx≤3x

)當a=2時,若關于x的不等式2fx+1|1﹣b|的解集為空集,求實數b的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在如圖所示的幾何體中,四邊形ABCD是菱形,ADNM是矩形,平面ADNM⊥平面ABCD,∠DAB=60°,AD=2,AM=1,EAB的中點.

(Ⅰ)求證:AN∥平面MEC;

(Ⅱ)在線段AM上是否存在點P,使二面角P﹣EC﹣D的大小為 ?若存在,求出AP的長h;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在三棱柱ABC﹣A1B1C1中,側面ABB1A1⊥底面ABC,CA=CB,D,E,F分別為AB,A1D,A1C的中點,點G在AA1上,且A1D⊥EG.

(1)求證:CD∥平面EFG;
(2)求證:A1D⊥平面EFG.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某媒體為了解某地區(qū)大學生晚上放學后使用手機上網情況,隨機抽取了100名大學生進行調查.如圖是根據調查結果繪制的學生每晚使用手機上網平均所用時間的頻率分布直方圖.將時間不低于40分鐘的學生稱為“手機迷”.

(1)樣本中“手機迷”有多少人?
(2)根據已知條件完成下面的2×2列聯表,并據此資料判斷是否有95%的把握認為“手機迷”與性別有關?
(3)將上述調查所得到的頻率視為概率.現在從該地區(qū)大量大學 生中,采用隨機抽樣方法每次抽取1名大學生,抽取3次,經調查一名“手機迷”比“非手機迷”每月的話費平均多40元,記被抽取的3名大學生中的“手機迷”人數為X,且設3人每月的總話費比“非手機迷”共多出Y元,若每次抽取的結果是相互獨立的,求X的分布列和Y的期望EY

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)= (a∈R).
(1)若不等式f(x)<1的解集為(﹣1,4),求a的值;
(2)設a≤0,解關于x的不等式f(x)>0.

查看答案和解析>>

同步練習冊答案