精英家教網 > 高中數學 > 題目詳情
2.解不等式:
(1)-x2+2x+3>0
(2)$\frac{x-2}{{{x^2}+x-12}}$≤0.

分析 (1)利用因式分解法即可求出不等式的解集,
(2)$\frac{x-2}{{{x^2}+x-12}}$≤0等價于$\left\{\begin{array}{l}{x-2≤0}\\{(x+4)(x-3)>0}\end{array}\right.$或$\left\{\begin{array}{l}{x-2≥0}\\{(x+4)(x-3)<0}\end{array}\right.$,解得即可.

解答 解:(1)-x2+2x+3>0,等價于x2-2x-3<0,即(x-3)(x+2)<0,解得-2<x<3,故不等式的解集為(-2,3),
(2)$\frac{x-2}{{{x^2}+x-12}}$≤0.等價于$\left\{\begin{array}{l}{x-2≤0}\\{(x+4)(x-3)>0}\end{array}\right.$或$\left\{\begin{array}{l}{x-2≥0}\\{(x+4)(x-3)<0}\end{array}\right.$,
解得x<-4或2≤x<3,
故不等式的解集為(-∞,-4)∪[2,3)

點評 本題考查了不等式的解法,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

5.在平面直角坐標系xOy中,設點F(2,0),直線l:x=-2,點M為直線l上的一個動點,線段MF與y軸交于點N,E為第一象限內一點,且滿足NE⊥MF,ME⊥直線l.
(1)求動點E的軌跡方程C;
(2)過點F做直線交軌跡C于A,B兩點,延長OA,OB分別交直線x+y+4=0于P,Q兩點,求線段|PQ|的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

13.如圖,已知A,B分別是函數f(x)=$\sqrt{3}$sinωx(ω>0)在y軸右側圖象上的第一個最高點和第一個最低點,且∠AOB=$\frac{π}{2}$,則該函數的周期是4.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

10.f(x)是定義在R上的奇函數,當x>0時,f(x)=x2+2x-1,
(1)求f(-2);
(2)求f(x)的表達式.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

17.若實數x,y滿足$\left\{\begin{array}{l}{x-y≥0}\\{x+y≤2}\\{y≥0}\end{array}\right.$,則目標函數z=2x+y 的取值范圍是[0,4].

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

7.已知全集U={1,2,3,4},集合A={1,2},則∁UA=( 。
A.{4}B.{3,4}C.{3}D.{1,3,4}

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

14.若雙曲線$\frac{x^2}{16}-\frac{y^2}{4}$=1右支上的一點M到雙曲線右焦點F2的距離為|MF2|=4,那么點M到左焦點F1的距離|MF1|=( 。
A.2B.4C.8D.12

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

11.直線x-2y=0與x+y-3=0的交點坐標是( 。
A.(-1,2)B.(-2,-1)C.(1,-2)D.(2,1)

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

12.“b≤∫${\;}_{\frac{1}{e}}^{e}$$\frac{1}{x}$dx”是“函數f(x)=$\left\{\begin{array}{l}{|x|+2,x>0}\\{{3}^{x}+b,x≤0}\end{array}\right.$是在R上的單調函數”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件e

查看答案和解析>>

同步練習冊答案