下列判斷不正確的是(  )
A、一個(gè)平面把整個(gè)空間分成兩部分
B、兩個(gè)平面將整個(gè)空間可分為三或四部分
C、任何一個(gè)平面圖形都是一個(gè)平面
D、圓和平面多邊形都可以表示平面
考點(diǎn):平面的基本性質(zhì)及推論
專題:空間位置關(guān)系與距離
分析:根據(jù)平面的基本性質(zhì)分別進(jìn)行判斷即可.
解答: 解:A.一個(gè)平面把整個(gè)空間分成兩部分,正確.
B.兩個(gè)平面將整個(gè)空間可分為三或四部分,正確.
C.任何一個(gè)平面圖形都可以表示一個(gè)平面,故C錯(cuò)誤.
D.圓和平面多邊形都可以表示平面,正確,
故錯(cuò)誤的是C,
故選:C
點(diǎn)評(píng):本題主要考查平面的基本性質(zhì),比較基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a=log 
1
3
2,b=log 
1
2
3,c=(
1
3
0.3,則( 。
A、a<b<c
B、a<c<b
C、b<c<a
D、b<a<c

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線l的參數(shù)方程為
x=5-
3
2
t
y=-
3
+
1
2
t
(t參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,圓C的極坐標(biāo)方程為ρ4cos(θ-
π
3
).
(1)判斷直線與圓的位置關(guān)系;
(2)若點(diǎn)P(x,y)在圓C上,求
3
x+y的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列四個(gè)命題中,
①二直線平行的充要條件是它們的斜率相等;
②點(diǎn)P(x,y)到A(-2,0),B(2,0)的距離和是4,則P的軌跡是線段AB;
③雙曲線上的點(diǎn)P與兩焦點(diǎn)F1,F(xiàn)2滿足|PF1|=2|PF2|,則雙曲線的離心率e∈(1,3];
④若△ABC的周長(zhǎng)為10,A(-1,0)、B(1,0),則點(diǎn)C的軌跡方程是
x2
16
+
y2
15
=1.
其中正確的命題是
 
(將你認(rèn)為正確的命題的序號(hào)都填上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線C的焦點(diǎn)為F1(-2,0),F(xiàn)2(2,0),且離心率為2;
(Ⅰ)求雙曲線的標(biāo)準(zhǔn)方程;
(Ⅱ)若經(jīng)過(guò)點(diǎn)M(1,3)的直線l交雙曲線C于A,B兩點(diǎn),且M為AB的中點(diǎn),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在幾何體ABCDE中,∠BAC=
π
2
,DC⊥平面ABC,EB⊥平面ABC,AB=AC=BE=2,CD=1.
(Ⅰ)設(shè)F為BC的中點(diǎn),求證:平面AFD⊥平面AFE;
(Ⅱ)設(shè)平面ABE與平面ACD的交線為直線l,求證:l∥平面BCDE;
(Ⅲ)求幾何體ABCDE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

過(guò)點(diǎn)P(0,2)的直線和拋物線y2=8x交于A,B兩點(diǎn),若線段AB的中點(diǎn)在直線x=2上,求弦AB的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

曲線C與雙曲線x2-y2=a2關(guān)于點(diǎn)(3,4)對(duì)稱,求曲線C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xOy中,橢圓C的焦點(diǎn)為F1(-4,0)、F2(4,0),且經(jīng)過(guò)點(diǎn)P(3,1).
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若點(diǎn)M在橢圓C上,且
OM
=
1
2
PF1
PF2
,求λ的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案