【題目】設(shè)二次函數(shù)的圖像過點,且對于任意實數(shù),不等式恒成立

(1)求的表達(dá)式;

(2)設(shè),若上是增函數(shù),求實數(shù)的取值范圍。

【答案】;(.

【解析】

試題分析:(1)恒成立得 ;(2)化簡

在區(qū)間 上為增函數(shù)且恒為正實數(shù) ,

試題解析:

(1)f(0)=c=1,f(1)=abc=4,

f(x)=ax2+(3-a)x+1.

f(x)≥4xax2-(a+1)x+1≥0恒成立得

解得a=1.

f(x)=x2+2x+1.

(2)F(x)=log2[g(x)-f(x)]=log2[-x2+(k-2)x].

F(x)在區(qū)間[1,2]上是增函數(shù),

h(x)=-x2+(k-2)x在區(qū)間[1,2]上為增函數(shù)且恒為正實數(shù),

解得k≥6.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知點F為拋物線的焦點,點A在拋物線E上,

點B在x軸上,且是邊長為2的等邊三角形。

(1)求拋物線E的方程;

(2)設(shè)C是拋物線E上的動點,直線為拋物線E在點C處的切線,求點B到直線距離的最小值,并求此時點C的坐標(biāo)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于圓周率,數(shù)學(xué)發(fā)展史上出現(xiàn)過許多很有創(chuàng)意的求法,如著名的蒲豐實驗和查理斯實驗.受其啟發(fā),我們也可以通過設(shè)計下面的實驗來估計的值:先請名同學(xué),每人隨機寫下一個都小于1的正實數(shù)對;再統(tǒng)計兩數(shù)能與1構(gòu)成鈍角三角形三邊的數(shù)對的個數(shù);最后再根據(jù)統(tǒng)計數(shù)來估計的值.假如統(tǒng)計結(jié)果是,那么可以估計

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)討論的單調(diào)性;

(2)若恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)當(dāng),且的最大值為,求的值;

2)方程上的兩解分別為、,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)圖象相鄰兩條對稱軸的距離為,將函數(shù)的圖象向左平移個單位后,得到的圖象關(guān)于y軸對稱則函數(shù)的圖象( )

A. 關(guān)于直線對稱 B. 關(guān)于直線對稱

C. 關(guān)于點對稱 D. 關(guān)于點對稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率,左、右焦點分別為,點,點在線段的中垂線上.

1)求橢圓的方程;

2)設(shè)直線與橢圓交于兩點,直線的傾斜角分別為,且,求證:直線過定點,并求該定點的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中

是函數(shù)的極值點,求實數(shù)a的值;

若對任意的為自然對數(shù)的底數(shù),都有成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)若關(guān)于的方程只有一個實數(shù)解,求實數(shù)的取值范圍;

2)若當(dāng)時,不等式恒成立,求實數(shù)的取值范圍;

3)探究函數(shù)在區(qū)間上的最大值(直接寫出結(jié)果,不需給出演算步驟).

查看答案和解析>>

同步練習(xí)冊答案