【題目】如圖,底面是邊長(zhǎng)為3的正方形,平面,,,與平面所成的角為.
(1)求證:平面平面;
(2)求二面角的余弦值.
【答案】(1)見(jiàn)解析;(2).
【解析】試題分析: (1)平面,平面,,又證出線面垂直平面,再根據(jù)面面垂直的判定定理證出結(jié)論;(2) 以為坐標(biāo)原點(diǎn),所在直線分別為軸建立如圖空間直角坐標(biāo)系,根據(jù)線面角大小求出側(cè)棱長(zhǎng),寫出各點(diǎn)坐標(biāo),進(jìn)而求出平面和平面的法向量,由二面角公式代入求值即可.
試題解析:(1)平面,平面.
.又底面是正方形,
平面,又平面,平面平面;
(2)以為坐標(biāo)原點(diǎn),所在直線分別為軸建立如圖空間直角坐標(biāo)系,
與平面所成的角為,
,. 設(shè)平面的一個(gè)法向量為則令,則.又平面,為平面的一個(gè)法向量. 二面角為銳角,二面角的余弦值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]
在平面直角坐標(biāo)系中,已知直線: (為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求曲線的直角坐標(biāo)方程;
(2)設(shè)點(diǎn)的極坐標(biāo)為,直線與曲線的交點(diǎn)為, ,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在四面體S﹣ABC中,SA⊥平面ABC,∠BAC=120°,SA=AC=2,AB=1,則該四面體的外接球的表面積為
A. 11π B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)為研究學(xué)生的身體素質(zhì)與課外體育鍛煉時(shí)間的關(guān)系,對(duì)該校200名高三學(xué)生平均每天課外體育鍛煉時(shí)間進(jìn)行調(diào)查,如表:(平均每天鍛煉的時(shí)間單位:分鐘)
將學(xué)生日均課外體育鍛煉時(shí)間在的學(xué)生評(píng)價(jià)為“課外體育達(dá)標(biāo)”.
(1)請(qǐng)根據(jù)上述表格中的統(tǒng)計(jì)數(shù)據(jù)填寫下面的列聯(lián)表;
課外體育不達(dá)標(biāo) | 課外體育達(dá)標(biāo) | 合計(jì) | |
男 | |||
女 | 20 | 110 | |
合計(jì) |
(2)通過(guò)計(jì)算判斷是否能在犯錯(cuò)誤的概率不超過(guò)0.01的前提下認(rèn)為“課外體育達(dá)標(biāo)”與性別有關(guān)?
參考格式:,其中
0.025 | 0.15 | 0.10 | 0.005 | 0.025 | 0.010 | 0.005 | 0.001 | |
5.024 | 2.072 | 6.635 | 7.879 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】經(jīng)過(guò)中央電視臺(tái)《魅力中國(guó)城》欄目的三輪角逐,黔東南州以三輪競(jìng)演總分排名第一名問(wèn)鼎“最具人氣魅力城市”.如圖統(tǒng)計(jì)了黔東南州從2010年到2017年的旅游總?cè)藬?shù)(萬(wàn)人次)的變化情況,從一個(gè)側(cè)面展示了大美黔東南的魅力所在.根據(jù)這個(gè)圖表,在下列給出的黔東南州從2010年到2017年的旅游總?cè)藬?shù)的四個(gè)判斷中,錯(cuò)誤的是( )
A. 旅游總?cè)藬?shù)逐年增加
B. 2017年旅游總?cè)藬?shù)超過(guò)2015、2016兩年的旅游總?cè)藬?shù)的和
C. 年份數(shù)與旅游總?cè)藬?shù)成正相關(guān)
D. 從2014年起旅游總?cè)藬?shù)增長(zhǎng)加快
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若在,處取得極值.
①求、的值;
②若存在,使得不等式成立,求的最小值;
(2)當(dāng)時(shí),若在上是單調(diào)函數(shù),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】[2018·石家莊一檢]已知函數(shù).
(1)若,求函數(shù)的圖像在點(diǎn)處的切線方程;
(2)若函數(shù)有兩個(gè)極值點(diǎn),,且,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,底面為矩形,平面平面,,,為的中點(diǎn),為上一點(diǎn),交于點(diǎn).
(1)證明:平面;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,設(shè)橢圓: ,長(zhǎng)軸的右端點(diǎn)與拋物線: 的焦點(diǎn)重合,且橢圓的離心率是.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)過(guò)作直線交拋物線于, 兩點(diǎn),過(guò)且與直線垂直的直線交橢圓于另一點(diǎn),求面積的最小值,以及取到最小值時(shí)直線的方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com