向圓內(nèi)隨機(jī)投擲一點(diǎn),此點(diǎn)落在該圓的內(nèi)接正n(n≥3,n∈N)邊形內(nèi)的概率為Pn,下列論斷正確的是(  )
A、隨著n的增大,Pn增大
B、隨著n的增大,Pn減小
C、隨著n的增大,Pn先增大后減小
D、隨著n的增大,Pn先減小后增大
考點(diǎn):幾何概型
專題:概率與統(tǒng)計(jì)
分析:由于隨著n的增大,圓的內(nèi)接正n(n≥3,n∈N)邊形的面積增大,即可答案.
解答: 解:由于由于隨著n的增大,圓的內(nèi)接正n(n≥3,n∈N)邊形的面積逐漸增大,
故向圓內(nèi)隨機(jī)投擲一點(diǎn),此點(diǎn)落在該圓的內(nèi)接正n(n≥3,n∈N)邊形內(nèi)的概率Pn也逐漸增大,
故選:A.
點(diǎn)評(píng):幾何概型的概率估算公式中的“幾何度量”,可以為線段長度、面積、體積等,而且這個(gè)“幾何度量”只與“大小”有關(guān),而與形狀和位置無關(guān).解決的步驟均為:求出滿足條件A的基本事件對(duì)應(yīng)的“幾何度量”N(A),再求出總的基本事件對(duì)應(yīng)的“幾何度量”N,最后根據(jù)P=
N(A)
N
求解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,E為AC上一點(diǎn),且
AC
=4
AE
,P為BE上一點(diǎn),且滿足
AP
=m
AB
+n
AC
(m>0,n>0),則
1
m
+
1
n
取最小值時(shí),向量
a
=(m,n)
的模為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知復(fù)數(shù)z=
2
+t
(1-
2
t)2
,則|z|=( 。
A、2
B、
2
3
3
C、
3
3
D、
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C的對(duì)邊分別是a,b,c.若a=5bsinC,且cosA=5cosBcosC,則tanA的值為(  )
A、5B、6C、-4D、-6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

集合P={x|y=
x
x+1
},集合Q={y|y=
x-1
},則P與Q的關(guān)系是( 。
A、P=QB、P?Q
C、P?QD、P∩Q=∅

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

集U={x|x≤1},A={x|-2≤x≤1},則∁UA=(  )
A、{x|x≤-2}
B、{x|x≤-2或x≥1}
C、{x|x<-2}
D、{x|x<-2或x>1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sin(2x+φ),其中f(x)≤|f(
π
6
)|對(duì)x∈R恒成立,且f(
π
2
)<f(π),則f(x)的單調(diào)遞增區(qū)間是(  )
A、[kπ+
π
6
,kπ+
3
](k∈Z)
B、[kπ,kπ+
π
2
](k∈Z)
C、[kπ-
π
3
,kπ+
π
6
](k∈Z)
D、[kπ-
π
2
,kπ](k∈Z)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x,y,z均為復(fù)數(shù),則x+z>2y是x+z-2y>0成立的什么條件( 。
A、充分不必要條件
B、必要不充分條件
C、充分必要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A箱裝有編號(hào)為1,2,3,4,5的五個(gè)小球(小球除編號(hào)不同之外,其他完全相同),B箱裝有編號(hào)為2,4的兩個(gè)小球(小球除編號(hào)不同之外,其他完全相同),甲從A箱中任取一個(gè)小球,乙從B箱中任取一個(gè)小球,用X,Y分別表示甲,乙兩人取得的小球上的數(shù)字.
(1)求概率P(X>Y);
(2)設(shè)隨機(jī)變量ξ=
X,X≥Y
Y,X<Y
,求ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案