7.已知函數(shù)f(x)=$\left\{\begin{array}{l}{-lnx,x≥0}\\{(\frac{1}{2})^{x},x<0}\end{array}\right.$則f(f(e))=2.

分析 先求出f(e)=-lne=-1,從而f(f(e))=f(-1),由此能求出結(jié)果.

解答 解:∵函數(shù)f(x)=$\left\{\begin{array}{l}{-lnx,x≥0}\\{(\frac{1}{2})^{x},x<0}\end{array}\right.$
∴f(e)=-lne=-1,
f(f(e))=f(-1)=($\frac{1}{2}$)-1=2.
故答案為:2.

點(diǎn)評(píng) 本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意函數(shù)性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.直角坐標(biāo)系xOy中,已知點(diǎn)M(-1,0)、N(1,0),點(diǎn)P到點(diǎn)M的距離是到點(diǎn)N的距離的$\sqrt{3}$倍,
(1)求點(diǎn)P的軌跡E的方程;
(2)已知不經(jīng)過(guò)原點(diǎn)的直線l:y=-x+b與軌跡E交于A、B兩點(diǎn),若以AB為直徑的圓恒經(jīng)過(guò)點(diǎn)N,求|AB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知F是雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左焦點(diǎn),過(guò)F作傾斜角為60°的直線l,直線l與雙曲線交于A,與y軸交于點(diǎn)B,且$\overrightarrow{FA}$=$\frac{1}{2}$$\overrightarrow{FB}$,則該雙曲線的離心率等于( 。
A.$\sqrt{3}$+1B.$\frac{\sqrt{3}+1}{2}$C.$\frac{\sqrt{3}}{2}$+1D.$\frac{\sqrt{3}-1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.設(shè)函數(shù)f(x)=lnx-$\frac{1}{2}$ax2-bx.
(1)當(dāng)a=b=$\frac{1}{2}$時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(2)當(dāng)a=0,b=-1時(shí),方程f(x)=mx在區(qū)間[$\frac{1}{e}$,+∞)內(nèi)有兩個(gè)不同的實(shí)數(shù)解,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知函數(shù)f(x)=(x-a)(x-b)(其中a>b)的圖象如圖所示,則函數(shù)g(x)=b+logax的圖象大致是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.在如圖所示的幾何體中,四邊形DCFE為正方形,四邊形ABCD為等腰梯形,AB∥CD,AC=$\sqrt{3}$,AB=2BC=2,且AC⊥FB.
(1)求證:平面EAC⊥平面FCB;
(2)若線段AC上存在點(diǎn)M,使AE∥平面FDM,求$\frac{AM}{MC}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知命題p:?x∈R,x2-x+1≤0,則( 。
A.¬p:?x0∈R,x02-x0+1≤0B.¬p:?x∈R,x2-x+1≥0
C.¬p:?x∈R,x2-x+1>0D.¬p:?0x∈R,x02-x0+1>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.高二年級(jí)有男生560人,女生420人,為了解學(xué)生職業(yè)規(guī)劃,現(xiàn)用分層抽樣的方法從該年級(jí)全體學(xué)生中抽取一個(gè)容量為280人的樣本,則此樣本中男生人數(shù)為( 。
A.120B.160C.280D.400

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.定義在R上的偶函數(shù)f(x)滿足,當(dāng)x<0時(shí),f(x)=$\frac{x}{x-1}$,則曲線y=f(x)在點(diǎn)(2,f(2))處的切線的斜率為$\frac{1}{9}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案