已知雙曲線的方程為
x2
a2
-
y2
b2
=1,點A,B在雙曲線的右支上,線段AB經過雙曲線的右焦點F2,|AB|=m,F(xiàn)1為另一焦點,則△ABF1的周長為( 。
A、2a+2mB、a+m
C、4a+2mD、2a+4m
考點:雙曲線的簡單性質
專題:計算題,圓錐曲線的定義、性質與方程
分析:利用雙曲線的定義可得|AF1|-|AF2|=2a,|BF1|-|BF2|=2a,進而得到其周長.
解答: 解:∵|AF1|-|AF2|=2a,|BF1|-|BF2|=2a,
又|AF2|+|BF2|=|AB|=m,
∴|AF1|+|BF1|=4a+m,
∴△ABF1的周長=|AF1|+|BF1|+|AB|=4a+2|AB|=4a+2m.
故選C.
點評:熟練掌握雙曲線的定義是解題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

有以下五個命題:
①y=sin2x+
9
sin2x
的最小值是6;
②已知f(x)=
x-
11
x-
10
,則f(4)<f(3);
③命題“函數(shù)f(x)在x=x0處有極值,則f′(x0)=0”的否命題是真命題;
④函數(shù)y=
1
x-1
在定義域上單調遞減;
⑤f(x)是(-∞,0)∪(0,+∞)上的奇函數(shù),x>0時的解析式是f(x)=2x,則x<0時的解析式為f(x)=-2-x
其中真命題是:
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線l:(2m+1)x+(m+1)y-7m-4=0(m∈R).圓C:(x-1)2+(y-2)2=25.
(1)求證:直線l恒過定點,并求出此定點;
(2)若直線l被圓C截得的線段的長度為4
6
,求實數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

點P是直線3x+y+10=0上的動點,PA,PB與圓x2+y2=4分別相切于A,B兩點,則四邊形PAOB面積的最小值為( 。
A、
6
B、2
C、2
6
D、4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

解關于x的不等式
a
x-2
≤1,(其中a為常數(shù))并寫出解集.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設橢圓方程為x2+
y2
4
=1,過點M(0,1)的直線l交橢圓于點A、B,O為坐標原點,點P為線段AB的中點,當l繞點M旋轉時,求動點P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

根據下列條件求橢圓的標準方程:
(1)焦點在x軸,兩準線間的距離為
18
5
5
,焦距為2
5
;
(2)已知P點在以坐標軸為對稱軸的橢圓上,點P 到兩焦點的距離分別為
4
5
3
2
5
3
,過P點作長軸的垂線恰好過橢圓的一個焦點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線l:x-2y+4=0和兩點A(0,4),B(-2,-4),點P(m,n)在直線l上有移動.
(1)求m2+n2的最小值;
(2)求||PB|-|PA||的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

計算:27-
1
3
+lg0.01-ln
e
+3log32=
 

查看答案和解析>>

同步練習冊答案