【題目】如圖,是的直徑,點(diǎn)B是上與A,C不重合的動點(diǎn),平面.
(1)當(dāng)點(diǎn)B在什么位置時(shí),平面平面,并證明之;
(2)請判斷,當(dāng)點(diǎn)B在上運(yùn)動時(shí),會不會使得,若存在這樣的點(diǎn)B,請確定點(diǎn)B的位置,若不存在,請說明理由.
【答案】(1)當(dāng)時(shí),平面平面,證明見解析,(2)不存點(diǎn)B使得,理由見解析
【解析】
(1)由題可推出平面平面,故時(shí),即可推出平面,進(jìn)而得出結(jié)論;
(2)假設(shè)存在點(diǎn)滿足題意,即可推出平面,進(jìn)而有,又由題可推得,故為銳角,這與矛盾,故不存點(diǎn)B使得.
(1)當(dāng)時(shí),平面平面,證明如下:
平面,平面,
平面平面,
,平面平面,
平面,
平面,
∴平面平面;
(2)假設(shè)存在點(diǎn)B,使得,
點(diǎn)B是上的動點(diǎn),
,
又,平面,,
平面,
平面,
,
設(shè),
在中,有,
在中,有,
可得,故為銳角,這與矛盾,
故不存點(diǎn)B使得.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若一條直線與一個(gè)平面垂直,則稱此直線與平面構(gòu)成一個(gè)“正交線面對”.那么在一個(gè)正方體中,由兩個(gè)頂點(diǎn)確定的直線與含有四個(gè)頂點(diǎn)的平面構(gòu)成的“正交線面對”的個(gè)數(shù)是( )
A. 48 B. 36 C. 24 D. 18
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】古代以六十年為一個(gè)甲子用十天干和十二地支相配六十年輪一遍,周而復(fù)始。甲子為干支之一,順序?yàn)榈谝粋(gè)前一位是癸亥,后一位是乙丑論陰陽五行,天干之甲屬陽之木,地支之子屬陽之水,是水生木相生,十干與十二支按順序兩兩相配,從甲子到癸亥,共六十個(gè)組合,稱六十甲子.
問題
(1)2020年是己亥年,至少多少年后又是己亥年?
(2)從一個(gè)已亥年到下一個(gè)己亥年,周期是多少?
(3)計(jì)算i,,,,…,一直計(jì)算下去,你會得到什么結(jié)論?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某港灣的平面示意圖如圖所示,、、分別是海岸線、上的三個(gè)集鎮(zhèn),位于的正南方向處,位于的北偏東方向處.隨著經(jīng)濟(jì)的發(fā)展,為緩解集鎮(zhèn)的交通壓力,擬在海岸線、上分別修建碼頭、,開辟水上航線,勘測時(shí)發(fā)現(xiàn):以為圓心,為半徑的扇形區(qū)域?yàn)闇\水區(qū),不適宜船只航行.
(1)能否求出集鎮(zhèn)、間的直線距離?
(2)根據(jù)勘測要求,要使、之間的直線航線最短,直線與圓應(yīng)滿足什么關(guān)系?
(3)應(yīng)怎樣確定碼頭、的位置,才能使得、之間的直線航線最短?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知圓O:和點(diǎn),由圓O外一點(diǎn)P向圓O引切線,Q為切點(diǎn),且有 .
(1)求點(diǎn)P的軌跡方程,并說明點(diǎn)P的軌跡是什么樣的幾何圖形?
(2)求的最小值;
(3)以P為圓心作圓,使它與圓O有公共點(diǎn),試在其中求出半徑最小的圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓E: ,對于任意實(shí)數(shù)k,下列直線被橢圓E截得的弦長與l:y=kx+1被橢圓E截得的弦長不可能相等的是( )
A. kx+y+k=0 B. kx-y-1=0
C. kx+y-k=0 D. kx+y-2=0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖①所示的等邊三角形的邊長為,是邊上的高,,分別是邊的中點(diǎn)現(xiàn)將沿折疊,使平面平面,如圖②所示.
① ②
(1)試判斷折疊后直線與平面的位置關(guān)系,并說明理由;
(2)求四面體外接球的體積與四棱錐的體積之比.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn),圓.
(1)若直線過點(diǎn)且到圓心的距離為,求直線的方程;
(2)設(shè)過點(diǎn)的直線與圓交于、兩點(diǎn)(的斜率為負(fù)),當(dāng)時(shí),求以線段為直徑的圓的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com