不等式|x+2|+|x-1|≥a2-2a對任意實數(shù)x恒成立,則實數(shù)a的取值范圍為
 
考點:絕對值不等式的解法
專題:不等式的解法及應(yīng)用
分析:利用絕對值不等式可得|x+2|+|x-1|≥3,依題意,解不等式a2-2a-3≤0即可求得實數(shù)a的取值范圍.
解答: 解:∵|x+2|+|x-1|≥|x+2-(x-1)|=3,
依題意得:a2-2a≤3,
解得:-1≤a≤3,
∴實數(shù)a的取值范圍為[-1,3].
故答案為:[-1,3].
點評:本題考查絕對值不等式的解法,突出考查一元二次不等式的解法及恒成立問題,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x2+a
x
,且f(1)=2
(1)判斷并證明函數(shù)f(x)在其定義域上的奇偶性;
(2)探究函數(shù)f(x)在(0,+∞)的單調(diào)性;
(3)求函數(shù)f(x)在區(qū)間[
1
3
,4]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知回歸直線方程
y
=bx+a,其中a=3且樣本點中心為(1,2),則回歸直線方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=
4x
x2+1
在區(qū)間(a-1,2a)上是單調(diào)遞增函數(shù),則實數(shù)a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x))圖象在M(1,f(1))處切線方程為y=2x+2,f(1)+f′(1)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

現(xiàn)將如圖所示的5個小正方形涂上紅、黃兩種顏色,其中3個涂紅色,2個涂黃色,若恰有兩個相鄰的小正方形涂紅色,則不同的涂法種數(shù)共有
 
.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-ax+lnx,若曲線f(x)的切線中有兩條垂直于直線y=x,則a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知某幾何體的三視圖如圖所示,則該幾何體的表面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若某程序框圖如圖所示,則該程序運行后輸出的值是( 。
A、4B、5C、6D、7

查看答案和解析>>

同步練習冊答案