【題目】如圖所示的多面體ABCDEF滿足:正方形ABCD與正三角形FBC所在的兩個平面互相垂直,FBAEFB2EA.

1)證明:平面EFD⊥平面ABFE;

2)求二面角EFDC的余弦值.

【答案】1)證明見解析(2

【解析】

1)先證明AB⊥平面BCF,然后可得平面EFD⊥平面ABFE

2)建立空間直角坐標系,求解平面的法向量,然后利用向量的夾角公式可求.

1)由題可得,因為ABCD是正方形且三角形FBC是正三角形,所以BCAD,BCADFBBC且∠FBC60°,

又因為EAFB2EAFB,所以∠EAD60°,在三角形EAD中,根據(jù)余弦定理可得:EDAE.

因為平面ABCD⊥平面FBC,ABBC,平面ABCD平面FBCBC,且AB平面ABCD,所以AB⊥平面BCF,

因為BCAD, E AFB,FBBCB,且FB、BC平面FCB,EA、AD平面EAD,所以平面EAD∥平面FBC,所以AB⊥平面EAD,

又因為ED平面EAD,所以ABED,

綜上:EDAE,EDAB,EAABAEA、AB平面ABFE,所以DE⊥平面ABFE,

DE平面DEF,所以平面EFD⊥平面ABFE.

2)如圖,分別取BCAD的中點O,G,連接OFOG,

因為BOOC且三角形FBC為正三角形,所以FOBC,

因為AGGDBOOC,所以OGAB,

由(1)可得,AB⊥平面FBC,則OG⊥平面FBC,

OFOB、OG兩兩垂直,分別以OB、OG、OF所在直線為x,yz軸建立如圖所示的空間直角坐標系,

不妨設BC4,則

設平面DEF的法向量為,平面DCF的法向量為,

,

所以

又二面角EFDC是鈍二面角,所以二面角EFDC的余弦值為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù),.

1)當時,求的值域;

2)當時,不等式恒成立(的導函數(shù)),求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的一個焦點與上下頂點構成直角三角形,以橢圓E的長軸為直徑的圓與直線相切.

(Ⅰ)求橢圓E的標準方程;

(Ⅱ)為橢圓上不同的三點,為坐標原點,若,試問:的面積是否為定值?若是,請求出定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在一次高三年級統(tǒng)一考試中,數(shù)學試卷有一道滿分10分的選做題,學生可以從,兩道題目中任選一題作答.某校有900名高三學生參加了本次考試,為了了解該校學生解答該選做題的得分情況,計劃從900名考生的選做題成績中隨機抽取一個容量為10的樣本,為此將900名考生選做題的成績按照隨機順序依次編號為001—900.

1)若采用隨機數(shù)表法抽樣,并按照以下隨機數(shù)表,以加粗的數(shù)字5為起點,從左向右依次讀取數(shù)據(jù),每次讀取三位隨機數(shù),一行讀數(shù)用完之后接下一行左端.寫出樣本編號的中位數(shù);

05 26 93 70 60 22 35 85 15 13 92 03 51 59 77 59 56 78 06 83 52 91 05 70 74

07 97 10 88 23 09 98 42 99 64 61 71 62 99 15 06 51 29 16 93 58 05 77 09 51

51 26 87 85 85 54 87 66 47 54 73 32 08 11 12 44 95 92 63 16 29 56 24 29 48

26 99 61 65 53 58 37 78 80 70 42 10 50 67 42 32 17 55 85 74 94 44 67 16 94

14 65 52 68 75 87 59 36 22 41 26 78 63 06 55 13 08 27 01 50 15 29 39 39 43

2)若采用系統(tǒng)抽樣法抽樣,且樣本中最小編號為08,求樣本中所有編號之和:

3)若采用分層軸樣,按照學生選擇題目或題目,將成績分為兩層,且樣本中題目的成績有8個,平均數(shù)為7,方差為4:樣本中題目的成績有2個,平均數(shù)為8,方差為1.用樣本估計900名考生選做題得分的平均數(shù)與方差.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)當時,求曲線處的切線方程;

2)求函數(shù)的單調區(qū)間;

3)若函數(shù)在區(qū)間內有且只有一個極值點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C1ab0)的離心率e,且點P,1)在橢圓C.

1)求橢圓C的方程;

2)若橢圓C的左焦點為F,右頂點為A,點Mst)(t0)是橢圓C上的動點,直線AMy軸交于點D,點Ey軸上一點,EFDFEA與橢圓C交于點G,若△AMG的面積為2,求直線AM的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2019年4月25日-27日,北京召開第二屆“一帶一路”國際高峰論壇,組委會要從6個國內媒體團和3個國外媒體團中選出3個媒體團進行提問,要求這三個媒體團中既有國內媒體團又有國外媒體團,且國內媒體團不能連續(xù)提問,則不同的提問方式的種數(shù)為 ( )

A. 198B. 268C. 306D. 378

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知極坐標系的極點O與直角坐標系的原點重合,極軸與直角坐標系中x軸的正半軸重合.C的參數(shù)方程為為參數(shù),),直線l,若直線l與曲線C相交于AB兩點,且.

1)求a

2)若M,N為曲線C上的兩點,且,求的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,ABCD為矩形,是以為直角的等腰直角三角形,平面平面ABCD

1)證明:平面平面PBC

2為直線PC的中點,且,求二面角的正弦值.

查看答案和解析>>

同步練習冊答案