【題目】如圖,四棱錐的底面是邊長(zhǎng)為的正方形, 底面, 分別為的中點(diǎn).

)求證: 平面

)若,試問(wèn)在線(xiàn)段上是否存在點(diǎn),使得二面角 的余弦值為?若存在,確定點(diǎn)的位置;若不存在,請(qǐng)說(shuō)明理由.

【答案】(Ⅰ)證明見(jiàn)解析;(Ⅱ)滿(mǎn)足條件的 存在,是 中點(diǎn)

【解析】試題分析:(1)證明線(xiàn)面平行,一般利用線(xiàn)面平行判定定理,即從線(xiàn)線(xiàn)平行出發(fā)給予證明,而線(xiàn)線(xiàn)平行的尋找與論證,往往需要結(jié)合平幾知識(shí),如本題取PD中點(diǎn)M,利用三角形中位線(xiàn)性質(zhì)得,再結(jié)合平行四邊形性質(zhì)得四邊形EFMA為平行四邊形,從而得出EFAM,(2)涉及二面角問(wèn)題,一般利用空間向量進(jìn)行解決,首先根據(jù)題意建立恰當(dāng)?shù)目臻g直角坐標(biāo)系,設(shè)立各點(diǎn)坐標(biāo),利用方程組求各面的法向量,結(jié)合向量數(shù)量積求向量夾角,最后根據(jù)二面角與向量夾角的關(guān)系列等量關(guān)系,求出待定參數(shù)

試題解析:證明:()取PD中點(diǎn)M,連接MF、MA,

PCD中,FPC的中點(diǎn),,

正方形ABCDEAB中點(diǎn),,,

故四邊形EFMA為平行四邊形,∴EF∥AM,

∵EF平面PAD,AM平面PAD,

∴EF∥平面PAD;

)結(jié)論:滿(mǎn)足條件的Q存在,是EF中點(diǎn).理由如下:

如圖:以點(diǎn)A為坐標(biāo)原點(diǎn)建立空間直角坐標(biāo)系,

P00,2),B0,1,0),C1,1,0),E0, ,0),F, ,1),

由題易知平面PAD的法向量為=0,10),

假設(shè)存在Q滿(mǎn)足條件:設(shè)

,, ,λ

設(shè)平面PAQ的法向量為,

,可得,

,

由已知: ,解得:

所以滿(mǎn)足條件的Q存在,是EF中點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線(xiàn),直線(xiàn)傾斜角是且過(guò)拋物線(xiàn)的焦點(diǎn),直線(xiàn)被拋物線(xiàn)截得的線(xiàn)段長(zhǎng)是16,雙曲線(xiàn) 的一個(gè)焦點(diǎn)在拋物線(xiàn)的準(zhǔn)線(xiàn)上,則直線(xiàn)軸的交點(diǎn)到雙曲線(xiàn)的一條漸近線(xiàn)的距離是( )

A. 2 B. C. D. 1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}的前n項(xiàng)和Sn=-n2n,求數(shù)列{|an|}的前n項(xiàng)和Tn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其中

(Ⅰ)求函數(shù)的零點(diǎn)個(gè)數(shù);

(Ⅱ)證明: 是函數(shù)存在最小值的充分而不必要條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,三棱錐,側(cè)棱,底面三角形為正三角形,邊長(zhǎng)為,頂點(diǎn)在平面上的射影為,有,且.

(Ⅰ)求證: 平面;

(Ⅱ)求二面角的余弦值;

(Ⅲ)線(xiàn)段上是否存在點(diǎn)使得⊥平面,如果存在,求的值;如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】由大于0的自然數(shù)構(gòu)成的等差數(shù)列{an},它的最大項(xiàng)為26,其所有項(xiàng)的和為70;

1)求數(shù)列{an}的項(xiàng)數(shù)n;

2)求此數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】求下列函數(shù)的定義域
(1)f(x)= ;
(2)f(x)=
(3)f(x)=

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面為矩形, 平面, , 中點(diǎn).

(I)證明: 平面

(II)證明: 平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在數(shù)列中, ,其前項(xiàng)和為,滿(mǎn)足,其中.

1)設(shè),證明:數(shù)列是等差數(shù)列;

2)設(shè)為數(shù)列的前項(xiàng)和,求;

3)設(shè)數(shù)列的通項(xiàng)公式為為非零整數(shù)),試確定的值,使得對(duì)任意,都有數(shù)列為遞增數(shù)列.

查看答案和解析>>

同步練習(xí)冊(cè)答案