【題目】如圖,三棱柱中,點(diǎn)的中點(diǎn).

(1)求證: 平面;

(2)若平面, , , ,求二面角的大小.

【答案】(1)見解析(2)

【解析】試題分析:(1連接,交于點(diǎn),連接,根據(jù)三角形中位線得到,進(jìn)而得到線面平行;(2)根據(jù)二面角的定義可證得是二面角的平面角,在三角形BD中求解即可。

解析:

1連接,交于點(diǎn),連接.

因?yàn)?/span>是三棱柱,所有四邊形為平行四邊形.

所以的中點(diǎn).

因?yàn)?/span>點(diǎn)的中點(diǎn),所以的中位線,

所以

平面, 平面,所以平面.

(2)是二面角的平面角.

事實(shí)上,因?yàn)?/span>, ,所以.

中, , 底邊的中點(diǎn),所以.

因?yàn)?/span>, ,

所以平面,

因?yàn)?/span>平面, 平面,

所以 ,

所以是二面角的平面角.

在直角三角形 中, ,

所以 為等腰直角三角形,

所以.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù), .

1)設(shè)函數(shù),求函數(shù)在區(qū)間上的值域;

2)定義表示中較小者,設(shè)函數(shù) .

①求函數(shù)的單調(diào)區(qū)間及最值

②若關(guān)于的方程有兩個(gè)不同的實(shí)根,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知在 的展開式中,第6項(xiàng)為常數(shù)項(xiàng).
(Ⅰ)求含x2的項(xiàng)的系數(shù);
(Ⅱ)求展開式中所有的有理項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四面體中, 平面, , , .

求四面體的四個(gè)面的面積中,最大的面積是多少?

Ⅱ)證明:在線段上存在點(diǎn),使得,并求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】命題p:關(guān)于x的方程x2+ax+2=0無(wú)實(shí)根,命題q:函數(shù)f(x)=logax在(0,+∞)上單調(diào)遞增,若“p∧q”為假命題,“p∨q”真命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,一塊形狀為四棱柱的木料, 分別為的中點(diǎn).

(1)要經(jīng)過(guò)將木料鋸開,在木料上底面內(nèi)應(yīng)怎樣畫線?請(qǐng)說(shuō)明理由;

(2)若底面是邊長(zhǎng)為2的菱形, , 平面,求幾何體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)對(duì)任意實(shí)數(shù)均有,其中常數(shù)為負(fù)數(shù),且在區(qū)間上有表達(dá)式.

(1)寫出上的表達(dá)式,并寫出函數(shù)上的單調(diào)區(qū)間(不用過(guò)程,直接寫出即可);

(2)求出上的最小值與最大值,并求出相應(yīng)的自變量的取值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某同學(xué)參加學(xué)校自主招生3門課程的考試,假設(shè)該同學(xué)第一門課程取得優(yōu)秀成績(jī)概率為 ,第二、第三門課程取得優(yōu)秀成績(jī)的概率分別為p,q(p<q),且不同課程是否取得優(yōu)秀成績(jī)相互獨(dú)立,記ξ為該生取得優(yōu)秀成績(jī)的課程數(shù),其分布列為

ξ

0

1

2

3

p

x

y

(Ⅰ)求該生至少有1門課程取得優(yōu)秀成績(jī)的概率及求p,q的值;
(Ⅱ)求該生取得優(yōu)秀成績(jī)課程門數(shù)的數(shù)學(xué)期望Eξ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓 的離心率為 ,且過(guò)點(diǎn) , , 是橢圓 上異于長(zhǎng)軸端點(diǎn)的兩點(diǎn).
(1)求橢圓 的方程;
(2)已知直線 ,且 ,垂足為 , ,垂足為 ,若 ,且 的面積是 面積的5倍,求 面積的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案