【題目】如圖,四面體中, 平面, , , .

求四面體的四個(gè)面的面積中,最大的面積是多少?

Ⅱ)證明:在線段上存在點(diǎn),使得,并求的值.

【答案】(Ⅰ) ;(Ⅱ)證明見解析.

【解析】試題分析:(1)易得, , , 均為直角三角形,且的面積最大,進(jìn)而求解即可;

(2)在平面ABC內(nèi),過點(diǎn)BBNAC,垂足為N.在平面PAC內(nèi),過點(diǎn)NMNPAPC于點(diǎn)M,連接BM,可證得AC⊥平面MBN,從而使得ACBM,利用相似和平行求解即可.

試題解析:

1由題設(shè)AB1,AC2BC,

可得,所以,

PA⊥平面ABCBC、AB平面ABC,所以, ,

所以,

又由于PA∩ABA,故BC⊥平面PAB,

PB平面PAB,所以,

所以, , , 均為直角三角形,且的面積最大,

2證明:在平面ABC內(nèi),過點(diǎn)BBNAC,垂足為N.在平面PAC內(nèi),過點(diǎn)NMNPAPC于點(diǎn)M,連接BM

PA⊥平面ABCPAAC,所以MNAC

由于BNMNN,故AC⊥平面MBN

BM平面MBN,所以ACBM

因?yàn)?/span>相似, ,

從而NCACAN

MNPA,得

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方體ABCD-A1B1C1D1,EF,P,Q,M,N分別是棱AB,AD,DD1,BB1,A1B1,A1D1的中點(diǎn).求證

(1)直線BC1∥平面EFPQ.

(2)直線AC1⊥平面PQMN.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)試比較的大小關(guān)系,并給出證明;

(2)解方程: ;

(3)求函數(shù) 是實(shí)數(shù))的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】衡州市臨棗中學(xué)高二某小組隨機(jī)調(diào)查芙蓉社區(qū)160個(gè)人,以研究這一社區(qū)居民在20:00﹣22:00時(shí)間段的休閑方式與性別的關(guān)系,得到下面的數(shù)據(jù)表:

休閑方式
性別

看電視

看書

合計(jì)

20

100

120

20

20

40

合計(jì)

40

120

160

下面臨界值表:

P(K2≥k0

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

2.072

2.706

3.841

5.024

6.635

7.879

10.828


(Ⅰ)將此樣本的頻率估計(jì)為總體的概率,隨機(jī)調(diào)查3名在該社區(qū)的男性,設(shè)調(diào)查的3人在這一時(shí)間段以看書為休閑方式的人數(shù)為隨機(jī)變量X,求X的分別列和期望;
(Ⅱ)根據(jù)以上數(shù)據(jù),能否有99%的把握認(rèn)為“在20:00﹣22:00時(shí)間段的休閑方式與性別有關(guān)系”?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知A(﹣1,1,2)、B(1,0,﹣1),設(shè)D在直線AB上,且 =2 ,設(shè)C(λ, +λ,1+λ),若CD⊥AB,則λ的值為( )
A.
B.﹣
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場調(diào)查與預(yù)測,A產(chǎn)品的利潤與投資成正比,其關(guān)系如圖①;B產(chǎn)品的利潤與投資的算術(shù)平方根成正比,其關(guān)系如圖②.(注:利潤和投資單位:萬元)

(1)分別將AB兩種產(chǎn)品的利潤表示為投資的函數(shù)關(guān)系式;

(2)已知該企業(yè)已籌集到18萬元資金,并將全部投入A,B兩種產(chǎn)品的生產(chǎn),怎樣分配這18萬元投資,才能使該企業(yè)獲得最大利潤?其最大利潤約為多少萬元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱柱中,點(diǎn)的中點(diǎn).

(1)求證: 平面;

(2)若平面 , 求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某化工廠擬建一個(gè)下部為圓柱,上部為半球的容器(如圖,圓柱高為h,半徑為r,不計(jì)厚度,單位:米),按計(jì)劃容積為72π立方米,且h≥2r,假設(shè)其建造費(fèi)用僅與表面積有關(guān)(圓柱底部不計(jì)),已知圓柱部分每平方米的費(fèi)用為2千元,半球部分每平方米4千元,設(shè)該容器的建造費(fèi)用為y千元.

(Ⅰ)求y關(guān)于r的函數(shù)關(guān)系,并求其定義域;
(Ⅱ)求建造費(fèi)用最小時(shí)的r.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在三棱柱 中,底面為正三角形,側(cè)棱垂直底面, .若 分別是棱 上的點(diǎn),且 ,則異面直線 所成角的余弦值為( )

A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊答案