11.某幾何體的三視圖如圖所示,該幾何體的體積是( 。
A.$\frac{4}{3}$B.$\frac{8}{3}$C.2D.4

分析 由已知中的三視圖可得該幾何體是一個(gè)以俯視圖為底面的三棱錐,進(jìn)而可得答案.

解答 解:由已知中的三視圖可得該幾何體是一個(gè)以俯視圖為底面的三棱錐,
其底面面積S=$\frac{1}{2}×(1+3)×3$=6,
高h(yuǎn)=2,
故棱錐的體積V=$\frac{1}{3}Sh$=4,
故選:D.

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是由三視圖,求體積和表面積,根據(jù)已知的三視圖,判斷幾何體的形狀是解答的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.計(jì)算$\sqrt{1-cos^21540°}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.如圖,四棱錐P-ABCD的底面是正方形,PD⊥底面ABCD,點(diǎn)E在棱PB上.
(1)求證:AC⊥平面PDB
(2)當(dāng)PD=$\sqrt{2}$AB=2,設(shè)E為PB的中點(diǎn),求AE與平面ABCD所成角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知命題“p:?x∈[0,1],ex+a≥0”,命題“q:?x∈R,x2+x+a=0”,若命題“p∧q”為真命題,則實(shí)數(shù)a的取值范圍為(-∞,-e].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.若偶函數(shù)f(x)在(-∞,0]內(nèi)單調(diào)遞減,則不等式f(-1)<f(x)的解集是( 。
A.(-∞,-1)B.(-1,+∞)C.(-1,1)D.(-∞,-1)∩(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.設(shè)$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$是兩個(gè)互相垂直的單位向量,且$\overrightarrow{OA}$=$\frac{1}{4}$$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$,$\overrightarrow{OB}$=$\overrightarrow{{e}_{1}}$+$\frac{1}{2}$$\overrightarrow{{e}_{2}}$則$\overrightarrow{OA}$在$\overrightarrow{OB}$上的投影為(  )
A.$\frac{{\sqrt{10}}}{4}$B.$\frac{{\sqrt{5}}}{3}$C.$\frac{{3\sqrt{5}}}{10}$D.$\frac{{2\sqrt{2}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.在各項(xiàng)均為正數(shù)的等比數(shù)列{bn}中,若b1•b14=3,則log3b1+log3b2+…+log3b14等于( 。
A.5B.6C.7D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.函數(shù)$f(x)=\sqrt{2x-4}$的單調(diào)遞增區(qū)間是[2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知數(shù)列{an}滿足a1=0,an+1-an=10-3n(n∈N*),則an的最大值為12.

查看答案和解析>>

同步練習(xí)冊(cè)答案