分析 (1)根據(jù)題意證明AC⊥BD,PD⊥AC,可得AC⊥平面PDB;
(2)根據(jù)直線和平面所成角的定義找出直線和平面所成的角,即可得到結(jié)論.
解答 (1)證明:∵四邊形ABCD是正方形,∴AC⊥BD,
∵PD⊥底面ABCD,AC?底面ABCD,
∴PD⊥AC,
又BD∩PD=D,
∴AC⊥平面PDB,(3分)
(2)解:設(shè)AC∩BD=O,連接OE,由(1)知AC⊥平面PDB于O,
又O,E分別為DB、PB的中點,
∴OE∥PD,OE=12PD=√22,
∵PD⊥底面ABCD,
∴OE⊥底面ABCD,
則∴∠EAO為AE與平面ABCD所的角,
∵PD=√2AB=2,
∴PD=2,AB=√2,
在Rt△AOE中,OE=√22,
∵AB=√2,
∴A0=1,
∵AB=AO,
∴∠AEO=45°,(7分)
即AE與平面PDB所成的角的大小為45°.
點評 本題主要考查了直線與平面垂直的判定,以及直線與平面所成的角,考查空間想象能力、運算能力和推理論證能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | \frac{π}{3}+kπ(k∈Z) | B. | \frac{π}{6}+2kπ(k∈Z) | C. | \frac{π}{3}+2kπ(k∈Z) | D. | \frac{π}{6}+kπ(k∈Z) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | f(1)<f(\frac{5}{2})<f(\frac{7}{2}) | B. | f(\frac{5}{2})<f(1)<f(\frac{7}{2}) | C. | f(\frac{7}{2})<f(\frac{5}{2})<f(1) | D. | f(\frac{7}{2})<f(1)<f(\frac{5}{2}) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (9,+∞) | B. | {0} | C. | (-∞,9] | D. | (0,9] |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com