11.已知a,b表示兩條不同直線,α,β,γ表示三個(gè)不同平面,給出下列命題:
①若α∩β=a,b?α,a⊥b,則α⊥β;
②若a?α,a垂直于β內(nèi)的任意一條直線,則α⊥β;
③若α⊥β,α∩β=a,α∩γ=b,則a⊥b;
④若a不垂直于平面α,則a不可能垂直于平面α內(nèi)的無(wú)數(shù)條直線;
⑤若a⊥α,a⊥β,則α∥β.
上述五個(gè)命題中,正確命題的序號(hào)是②⑤.

分析 對(duì)于①③,根據(jù)線面垂直的判斷定理,對(duì)于②④⑤線面垂直的性質(zhì)定理,判斷即可.

解答 解:對(duì)于①,根據(jù)線面垂直的判定定理,需要一條直線垂直于兩條相交的直線,故不正確,
對(duì)于②a?α,a垂直于β內(nèi)的任意一條直線,滿足線面垂直的定理,即可得到a⊥β,又a?α,則α⊥β,故正確,
對(duì)于③α⊥β,α∩β=a,α∩γ=b,則a⊥b或a∥b,或相交,故不正確,
對(duì)于④若a不垂直于平面α,則a可能垂直于平面α內(nèi)的無(wú)數(shù)條直線,故不正確,
對(duì)于⑤根據(jù)線面垂直的性質(zhì),若a⊥α,a⊥β,則α∥β,故正確
故答案為:②⑤

點(diǎn)評(píng) 本題考查命題真假的判斷,是中檔題,解題時(shí)要認(rèn)真審題,注意空間中線線、線面、面面間的位置關(guān)系的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.對(duì)任意a∈R,曲線y=ex(x2+ax+1-2a)在點(diǎn)P(0,1-2a)處的切線l與圓C:(x-1)2+y2=16的位置關(guān)系是( 。
A.相交B.相切C.相離D.以上均有可能

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知向量$\overrightarrow a=({\frac{1}{2},sinα})$,$\overrightarrow b=({sinα,1})$,若$\overrightarrow a∥\overrightarrow b$,則銳角α為( 。
A.30°B.60°C.45°D.75°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知集合A={x|x>-1},則下列選項(xiàng)正確的是( 。
A.0⊆AB.{0}⊆AC.∅∈AD.{0}∈A

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知數(shù)列{an},{bn}與函數(shù)f(x),{an}是首項(xiàng)a1=15,公差d≠0的等差數(shù)列,{bn}滿足:bn=f(an).
(1)若a4,a7,a8成等比數(shù)列,求d的值;
(2)若d=2,f(x)=|x-21|,求{bn}的前n項(xiàng)和Sn
(3)若d=-1,f(x)=ex,Tn=b1•b2•b3…bn,問(wèn)n為何值時(shí),Tn的值最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知函數(shù)f(x)=x-alnx-1,$g(x)=\frac{x}{{{e^{x-1}}}}$,其中a為實(shí)數(shù).
(Ⅰ)求函數(shù)g(x)的極值;
(Ⅱ)設(shè)a<0,若對(duì)任意的x1、x2∈[3,4](x1≠x2),$|{f({x_2})-f({x_1})}|<|{\frac{1}{{g({x_2})}}-\frac{1}{{g({x_1})}}}|$恒成立,求實(shí)數(shù)a的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知數(shù)列{an}中,點(diǎn)(an,an+1)在直線y=x+2上,且首項(xiàng)a1=1.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)數(shù)列{an}的前n項(xiàng)和為Sn,等比數(shù)列{bn}中,b1=a1,b2=a2,數(shù)列{bn}的前n項(xiàng)和為T(mén)n,請(qǐng)寫(xiě)出適合條件Tn≤Sn的所有n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知實(shí)數(shù)a,b均大于0,且$({\frac{1}{a}+\frac{1}})\sqrt{{a^2}+{b^2}}≥2m-4$總成立,則實(shí)數(shù)m的取值范圍是(-∞,2+$\sqrt{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.如圖,在三棱柱ABC-A1B1C1中,側(cè)面BB1C1C 為菱形,B1C與BC1交于點(diǎn)O,AO⊥平面BB1C1C
(1)求證:平面ABC1⊥平面A1B1C;
(2)若AC⊥AB1,∠BCC1=120°,BC=1,求點(diǎn)B1到平面ABC的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案